Title: SECOND READING, public hearing, discussion and possible adoption of Bill No. 2748, an ordinance for approval of a Development Agreement by and between the City of Sparks, The Foothills at Wingfield, LLC and Albert D. Seeno Construction Company concerning the development of real property 65 acres in size located east of Golden Eagle Regional Park and south of Vista Boulevard, Sparks, NV (PCN18-0005) (FOR POSSIBLE ACTION)

Petitioner/Presenter: The Foothills at Wingfield, LLC and Albert D. Seeno Construction Company/Armando Ornelas, Assistant Community Services Director

Recommendation: The Planning Commission recommends that the City Council adopt Bill No. 2748, an ordinance for approval of a Development Agreement by and between the City of Sparks, The Foothills at Wingfield, LLC and Albert D. Seeno Construction Company concerning the development of real property 65 acres in size located east of Golden Eagle Regional Park and south of Vista Boulevard, Sparks, NV

Financial Impact: No direct financial cost. The fiscal impact analysis submitted by the applicant estimates this annexation and single-family development of between 420 and 475 single family units.

Business Impact (Per NRS 237):

A Business Impact Statement is not required because this is not a rule.

Agenda I tem Brief:

The proposed Development Agreement (the "Agreement") is for three parcels totaling 65 acres located east of Golden Eagle Regional Park and south of Vista Boulevard. The parties to the Agreement are the City of Sparks, Foothills at Wingfield, LLC (the property owner) and Albert D. Seeno Construction Company (the developer). The Agreement addresses the type and intensity of development permitted on the site, the land use entitlements necessary to develop the site, and the infrastructure needed to comply with Truckee Meadows Regional Plan and the Sparks Comprehensive Plan concurrency requirements.

The Agreement is coming forward for City Council consideration in conjunction with two related requests for: certification of a Comprehensive Plan amendment to change the land use designation of the site from Open Space (OS), Commercial (C), Multi-Family (MF24), High Density Residential (HDR), Large Lot Residential (LLR), and Mixed Use (MU) to Intermediate Density Residential (IDR); and, rezoning of the subject property from A5 (Agriculture) to SF6 (Single Family – 6, 000 sq. ft. lots).

Background:

This site is located directly east of and adjacent to Golden Eagle Regional Park (GERP) (Exhibit 1 – Vicinity Map). The site is 65 acres in size and is comprised of one parcel that is approximately 60 acres in size and two parcels that are each approximately 2.5 acres in size. There is an agricultural building on the 60-acre parcel and an uninhabited single-family home and several accessory buildings on the smaller parcels. All existing buildings will be removed with the future development of this site.

Access to the site is via a Bureau of Land Management (BLM) access easement that starts at the intersection of Homerun Drive and Vista Boulevard on the GERP site. The existing easement then follows Homerun Drive to Touchdown Drive and turns east onto an unnamed maintenance yard access road (Exhibit 2 – Existing Easement). Homerun Drive, Touchdown Drive, and the unnamed maintenance yard access road are maintained by the City of Sparks but are not City streets because the City does not own the right-of-way or the roads. Rather, the roads are part of the City's lease agreement with BLM for GERP. The proposed realignment of the existing access easement and approval of said alignment by BLM are addressed in the Analysis section of this staff report.

The site has a variety of Comprehensive Plan land use designations: Open Space (OS), Commercial (C), Multi-Family (MF24), High Density Residential (HDR), Large Lot Residential (LLR), and Mixed Use (MU). These designations were adopted in 2007 (PCN07075). After approval of these land uses, a planned development handbook for development of the site

was initiated but was never processed or adopted. The zoning for this site is A-5 (Agriculture), which would only allow this property to be subdivided into parcels at least 5 acres in size. The applicant no longer believes that the existing land use designations and configuration are a viable development scenario and has submitted applications to amend the Comprehensive Plan and rezone the property.

The two 2.5-acre parcels in the southwest corner of the site were annexed in 2015 (PCN15036) and the City zoning of A-5 was assigned to the parcels at that time.

The applicant has requested to amend the Comprehensive Plan Land Use designations to Intermediate Density Residential (IDR) and change the zoning to Single Family Residential (SF6). Because of the need for conditions and requirements to address access and sewer capacity issues to meet the requirements for concurrency in the Comprehensive and Regional Plans, staff recommended that the applicant enter into a development agreement with the City of Sparks.

On August 2, 2018, the Planning Commission reviewed these three requests, approved the Comprehensive Plan amendment, and recommended that the City Council approve the development agreement and rezoning requests. (Please refer to the Planning Commission Report of Action.)

On October 10, 2018, the Regional Planning Commission (RPC) held a public hearing and reviewed the requested Comprehensive Plan amendment. The RPC determined that the Comprehensive Plan amendment conforms with the Truckee Meadows Regional Plan.

Analysis:

The proposed Development Agreement (the "Agreement") must be approved by the Sparks City Council to take effect. The Planning Commission was responsible for reviewing the agreement for consistency with the Comprehensive Plan.

Summary of Development Agreement Terms

Permitted uses and density are addressed in Section 3.1, which specifies that between 420 and 475 residential units are permitted at a gross density between 6.4 and 7.3 dwelling units per acre. Single family detached and attached units are permitted in the portion of the property for which SF6 zoning is requested.

Section 3.2 requires the developer to provide documentation of its legal right to access the site through BLM land for the uses and densities contemplated by the proposed Agreement.

Required infrastructure improvements are addressed in Section 3.3. This includes the off-site infrastructure, at the developer's expense, necessary for the proposed project. The required improvements include, without limitation:

- * Necessary sanitary sewer upgrades.
- * Street improvements to address the additional traffic that the proposed development will generate. This includes:
 - Construction of an all-weather second fire apparatus access road prior to the storage of any combustible materials on the site. The Agreement as proposed by staff requires the second fire apparatus access road to be privately maintained. The developer has expressed its preference that the proposed Agreement be amended to reflect that the second fire apparatus access road will be publicly maintained.
 - Intersection improvements at Vista Boulevard and Homerun Drive to increase right and left turn lane storage capacity.
 - All streets from Vista Boulevard to the site shall be built to City standards prior to

issuance of a certificate of occupancy or final inspection.

- The developer shall be responsible for maintaining all streets from Vista Boulevard to the site during all construction.
- Stop signs shall be installed at the south and east approaches of the intersection of Homerun Drive and Touchdown Drive. An exclusive left turn lane shall be installed at the north approach of this intersection as well. These improvements shall be completed prior to the issuance of a certificate of occupancy or final inspection.
- The roadway construction schedule shall be coordinated with the City's Parks and Recreation Department and Community Services Department. The public access to GERP must be maintained for the duration of all construction of the project and the master developer will be responsible for all damage to streets and other improvements.
- Prior to the issuance of the certificate of occupancy or final inspection of any dwelling units in excess of 75 dwelling units in the project, the intersection of Vista Boulevard, Homerun Drive, and Scorpius Drive shall be improved to include one exclusive left turn lane, one shared left turn/through lane, and one exclusive right turn lane at the south approach.
- * All internal streets and sidewalks shall be privately owned and maintained. The primary access to the site shall be privately maintained until such a time that the City needs to use some portion of the primary access to access future park facilities.
- * Prior to the approval of any tentative map, a report estimating the cost to maintain the private streets and an estimate of the assessment necessary to provide adequate funding to perform said maintenance shall be submitted to the City for review. The City may deny tentative map requests if the report does not comply with NRS Chapter 116A regarding reserve studies.
- * The developer shall provide pedestrian and bicycle access routes to GERP.

Section 3.3 also requires that the master developer establish and maintain a landscape buffer at least 25 feet wide between the proposed homes and GERP for the purpose of screening the homes from the lights and noises generated at GERP.

Section 4 permits the City Council to review the developer's compliance with the terms of the Agreement within 12 months of its effective date. It also requires the developer to report, every 24 months after that initial review, on the number of units approved and built, development densities, and the status of the project.

Section 6.1 specifies the duration of the Agreement, which is 10 years. The Agreement grants the developer the right to request one 5-year extension subject to certain conditions.

Comprehensive Plan Amendment Findings

The purpose of bundling the Agreement with the Comprehensive Plan amendment and rezoning requests is to provide the public, third-party reviewing agencies, the Planning Commission, and City Council with an understanding of the proposed development of the subject property at the time these requests are considered. The Agreement is also intended to serve as the basis for satisfying the concurrency requirement (Goal 3.5 and Policy 3.5.1) of the 2012 Truckee Meadows Regional Plan for infrastructure and public services that must be addressed with the land use applications.

The Planning Commission found the Agreement consistent with the Comprehensive Plan in part because the Agreement obligates the developer to construct private access infrastructure to a site that does not abut public right-of-way. The Agreement also requires the developer to construct intersection improvements in the City right-of-way on Vista Boulevard and a second fire apparatus access road.

The Agreement thus supports and is consistent with the following Comprehensive Plan goals and policies:

Policy MG5 When reviewing master plan amendments for sites over 5 acres, the City will evaluate or cause to be evaluated: a) the impacts on existing and planned facilities and infrastructure; b) the impacts on existing and planned public services; c) the proposed land use in relationship to existing land uses; and, d) the fiscal implications for public service providers of the proposed land use changes as documented in a fiscal impact analysis.

Policy CF1: When reviewing new development, the City will not approve an application unless the City services can be provided at acceptable service levels.

In support of Policy MG5, the applicant has submitted, and City staff and the Planning Commission have reviewed, sewer and traffic studies (attached) that provide recommendations detailing how the impacts of this proposed development on existing infrastructure can be mitigated. The applicant also submitted a fiscal impact analysis (Exhibit D to Agreement) that was reviewed by City staff and the Planning Commission, in conformance with Policy MG5. The proposed Agreement supports a finding that the City can provide municipal services to the subject property concurrent with its development, complying with Policy CF1. This enabled the Planning Commission to make certain findings, including those regarding concurrency and fiscal impacts, in support of the applicant's development agreement, Comprehensive Plan land use amendment and rezoning requests.

Alternatives:

- 1. The City Council can adopt Bill 2748 for approval of the Development Agreement as presented.
- 2. The City Council can modify the Development Agreement subject to the consent of The Foothills at Wingfield, LLC and Albert D. Seeno Construction Company.
- 3. The City Council can reject the Development Agreement.

Recommended Motion:

I move to adopt Bill No. 2748, an ordinance for approval of a Development Agreement by and between the City of Sparks, The Foothills at Wingfield, LLC and Albert D. Seeno Construction Company concerning the development of real property 65 acres in size located east of Golden Eagle Regional Park and south of Vista Boulevard, Sparks, NV

When Recorded Return to: Sparks City Clerk PO Box 857 Sparks, NV 89432

BILL NO. 2748	INTRODUCED BY COUNCIL
ORDINANCE NO	PCN18-0005 - WINGFIELD COMMONS,
	65 ACRES GENERALLY LOCATED EAST
	OF GOLDEN EAGLE REGIONAL PARK

AN ORDINANCE BY THE CITY OF SPARKS TO APPROVE A DEVELOPMENT AGREEMENT WITH THE FOOTHILLS AT WINGFIELD, LLC AND ALBERT D. SEENO CONSTRUCTION COMPANY CONCERNING THE DEVELOPMENT OF PARCELS TOTALING 65 ACRES IN SIZE LOCATED EAST OF GOLDEN EAGLE REGIONAL PARK AND SOUTH OF VISTA BOULEVARD, SPARKS, NEVADA AND OTHER MATTERS PROPERLY RELATED THERETO.

AND SOUTH OF VISTA BOULEVARD.

WHEREAS, The Foothills at Wingfield, LLC owns certain real property situated in the County of Washoe, State of Nevada more specifically described as three parcels with Assessor's Parcel Numbers 084-550-02, 084-550-07 and 084-550-08, more particularly described on Exhibit A and depicted on Exhibit B attached hereto and incorporated by this reference (collectively, the "Property");

WHEREAS, the City is authorized, pursuant to Chapter 278 of the Nevada Revised Statutes and Title 20 of the Sparks Municipal Code, to enter into agreements concerning the development of land such as this Agreement with persons having a legal or equitable interest in real property;

WHEREAS, The Foothills at Wingfield, LLC filed comprehensive plan and zoning applications with the City of Sparks to change the comprehensive plan and zoning designations on the Property, more particularly described as City of Sparks Application Nos. PCN18-0005, MPA18-0001, and RZ18-0001 (collectively, the "Applications");

WHEREAS, the City, The Foothills at Wingfield, LLC and Albert D. Seeno Construction Company (collectively, the "Parties") acknowledge that this Agreement will (i) promote the health, safety and general welfare of the City and its inhabitants, (ii) minimize uncertainty in planning for and securing orderly development of the Property and surrounding areas, (iii) ensure attainment of the maximum efficient utilization of resources within the City at the least economic cost to its citizens, and (iv) otherwise achieve the goals and purposes for which the laws governing development agreements were enacted;

WHEREAS, the Parties desire to enter this Agreement to provide for processing of the Applications and development of the Property; and

WHEREAS, NRS 278.0203 and SMC 20.05.09 allow the Sparks City Council to approve a development agreement by ordinance.

NOW THEREFORE, THE CITY COUNCIL OF THE CITY OF SPARKS DOES ORDAIN:

- **SECTION 1:** The Development Agreement by and between the City of Sparks, The Foothills at Wingfield, LLC and Albert D. Seeno Construction Company is approved.
- **SECTION 2:** All ordinances or parts of ordinances in conflict herewith are hereby repealed.
- SECTION 3: The City Clerk is instructed and authorized to publish the title to this ordinance as provided by law and to record the approved Development Agreement as provided by law.
 - SECTION 4: This ordinance shall become effective upon

passage, approval, publication and recordation.

PASSED AND ADOPTED this

SECTION 5: The provisions of this ordinance shall be liberally construed to effectively carry out its purposes in the interest of the public health, safety, welfare and convenience.

SECTION 6: If any subsection, phrase, sentence or portion of this section is for any reason held invalid or unconstitutional by any court of competent jurisdiction, such portion shall be deemed a separate, distinct and independent provision, and such holding shall not affect the validity of the remaining portions.

SECTION 7: The City Council finds that this ordinance is not likely to impose a direct and significant economic burden upon a business or directly restrict the formation, operation or expansion of a business, or is otherwise exempt from Nevada Revised Statutes Chapter 237.

day of

2018, by the following vote AYES: NAYS: ABSENT:	of the City Council:
ABSTAIN:	day of,
2018 by:	
ATTEST:	Ron Smith, Mayor APPROVED AS TO FORM & LEGALITY:
Teresa Gardner, City Clerk	CHESTER H. ADAMS, City Attorney

EXHIBIT "A" LEGAL DESCRIPTION

APN 084-550-02, 084-550-07, & 084-550-08

Three parcels of land being the same as Parcel D of Parcel Map No. 115, according to the map thereof, filed in the office of the County Recorder of Washoe County, State of Nevada, on November 11, 1974, as File No. 346696, and the Southwest Quarter (SW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) and the Northwest Quarter (NW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) of Southeast Quarter (SE ¼) of Section 18, Township 20 North, Range 21 East, MDM, being more particularly described as follows:

Beginning at the East Quarter corner of said Section 18;

thence along the East boundary of said Section 18 North 00°36'37" East a distance of 1321.50 feet to the Northeast corner of said Parcel D, also being the North 1/16 corner of said Section 18;

thence departing said East boundary and along the North boundary of said Parcel D North 89°21'52" West a distance of 1318.34 feet to the Northwest corner of said Parcel D also being the North-East 1/16 corner of said Section 18;

thence departing said North boundary and along the West boundary of said Parcel D South 00°30'07" West a distance of 1320.71 feet to the Center-East 1/16 corner; thence continuing along said West boundary South 00°29'21" West a distance of 660.27 feet to the Southwest corner of said Parcel D also being the Center-North-Southeast 1/64 corner of said Section 18;

thence departing the boundary of said Parcel D and along the West boundary of said Northwest Quarter (NW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) South 00°29'21" West a distance of 330.14 feet to the Center-South-North-Southeast 1/256 corner;

thence along the West boundary of said Southwest Quarter (SW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) South 00°29'21" West a distance of 330.14 feet to the South-East 1/16 corner;

thence along the South boundary of said Southwest Quarter (SW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) South 89°17'48" East a distance of 328.41 feet to the Center-West-East-Southeast 1/256 corner; thence along the East boundary of said Southwest Quarter (SW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) North 00°30'47" East a distance of 330.18 feet to the Southwest-Northeast-Southeast 1/256 corner;

thence along the East boundary of said Northwest Quarter (NW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) North 00°30'47" East a distance of 330.18 feet to a point on the South boundary of said Parcel D, also being the Center-West-Northeast-Southeast 1/256 corner;

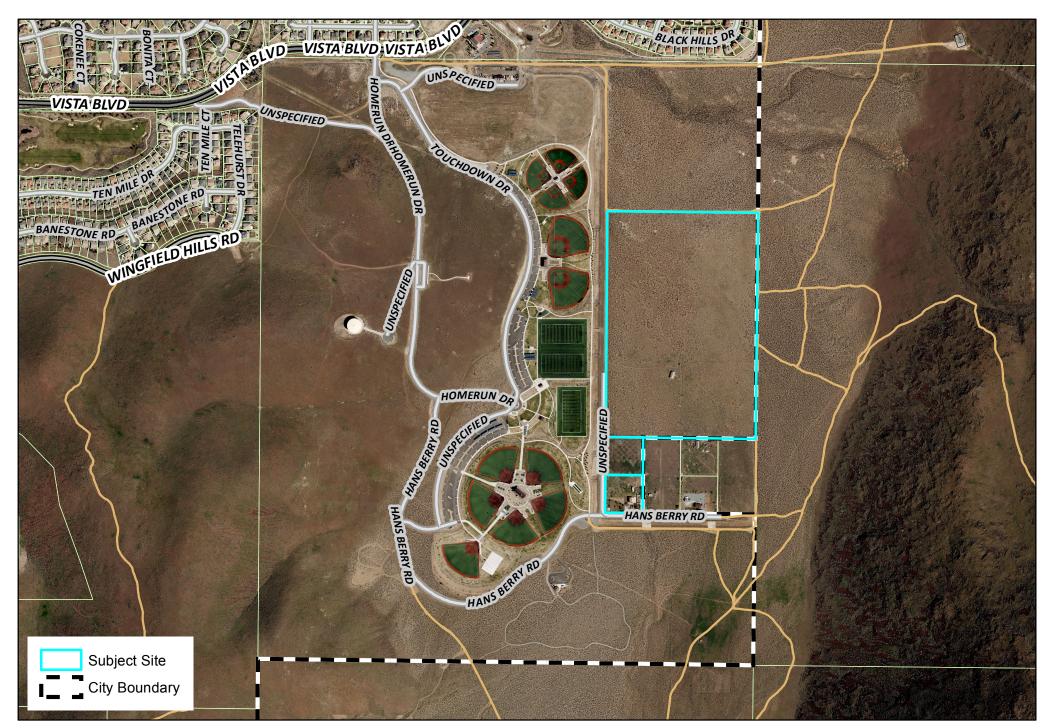
thence along the South boundary of said Parcel D South 89°18'48" East a distance of 986.05 feet to the Southeast corner of said Parcel D, also being the North-South 1/64 corner of said Section 18;

thence along the East boundary of said Section 18 North 00°35'06" East a distance of 660.65 feet to the Point of Beginning.

Said parcel contains an area of approximately 64.87 acres.

Basis of Bearings: Identical to those shown on Record of Survey Map 4319, File Number 2964693, recorded December 9, 2003, in the Official Records of Washoe County, Nevada, being Nevada State Plane Coordinate System, West Zone (NAD 93/94).

Description Prepared By: Ryan G. Cook, PLS 15224 Summit Engineering Corp. 5405 Mae Anne Avenue Reno, Nevada 89523 (775) 747-8550 ryan@summitnv.com


RYAN G. COOK Exp. 12-31-18 No. 1522

CHANGES TO THIS MAP

CHANGES TO THIS MAP EXHIBIT "B" THE CITY OF SPARKS SECTION 18, TZON, RZ1E, MDM RECORD OF SURVEY RECORD DATA PER PARCEL MAP 115 FILE NO. 346696 Record of Survey Map 4319 THE MONUMENTS DEPICTED ON THE PLAT ARE OF THE CHARACTER & OCCUPY THE POSTIONS INDICATED, AND ARE OF SUFFICIENT DURABL 1). THES IS AN ACCURATE REPRESENTATION OF THE LANDS SURVEYED IN AT THE REQUEST OF THE CITY OF SPARKS. THIS PLAT COMPLES WITH THE APPLICABLE STATE STATUTES AND ANY LOCAL CONTINUEDS IN EFFOT ON THE DATE THAT THE SHINGY WAS CONDUCTED IN ON THE SHINGY WAS CONDUCTED IN COMPLETED, AND THE SHINGY WAS CONDUCTED IN COMPLETED AND THE SHINGY WAS CONDUCTED IN COMPLETED AND THE SHINGY ADMINISTRATINE COMPLETED AND THE SHINGY ADMINISTRATINE COMPLETED. THIS RECORD OF SURVEY IS NOT IN CONFLICT WITH NRS 623,340 AND NO NEW LOTS ARE BEING CREATED. I, DON 14. MEHARO, A PROFESSIONAL LAND SURVEYOR LICENSED IN THE STATE OF NEVADA, CERTIFY THAT: BASIS OF BEARINGS AND COORDINATES: THE LANDS SURVEYED LIE WITHIN A PORTION OF SECTION 18, 120N, RZIE, LIDM, CITY OF SPARKS, WASHOE COUNTY, NEVADA Fd. 1/4 SECTION CORNER AS NOTED TOTAL AREA = 448.16± AC. Fd. SECTION CORNER AS NOTED 7 -8 Fd. MONUMENT AS NOTED 7 -8 18 17 Fd. SECTION CORNER 1 SURVEYOR'S CERTIFICATE 18/17 7 Fd. 1/4 SECTION CORT (GLO 1320) DATA PER GLO PLAT ON THIS of DAY OF DECEMBER OF SWALM IT ENGINEERS 2003, AT 47 WINUTES PAST [36.48] Fe. 1/2 REDAR W/ TRISTATE CO 1/7 ESTS OF NOTCHED STONE ACCEPTED AS SECTION CORNER WASHOE COUNTY CONTROL, POINT GROUNT CONDINATE. R14891597.22 E2321121.78 Fd. 1/2" REBAR 1.35" NORTH AND 0.5" WEST OF TRUE CORNER Fd. Z BRASS CAP RLS 1004 [1323.74] [47.5551] 5.1551 W "30'85'00 64. 5/8" REBAR RLS 827 0.95" NORTH AND 0.12" EAST PARCEL A P.M. 115 678h PARCEL B PARCEL C P.M. 115 SE 1/4 OF SE 1/4 NE 1/4 OF NE 1/4 [1311.58] Fd. 5/8" REBAR RLS 827 -0.59" NORTH AND 0.22" EAST 2622.85 Fd. 1/2" REBAR —0.55" NORTH AND 0.11 WEST OF TRUE CORNER [1322.09] 00.20.01 E 1250'11 8919'47" W 1315.84 N 89'21'52" W 1318.34 SW 1/4 OF SE 1/4 1/4 OF SE 1/4 SW 1/4 OF NE 1/4 1/4 OF NE 1/4 Fd. 5/8" REBAR RLS 827 AND 16"X7" X4" SCRIBED STONE APN 084-010-38 448.16± AC. S 0023.26" W 1319.80 S 0023.36 W 1319.92 00.53,36" W 1319.92 S 0023.36 W 1319.80 2964693 COVAIT LOT 2 CONMIT LOT 3 CONNT LOT F4. 2" BRASS CAP PLS 445 AT EAST 1/4 CORNER SEC. 12 Fd. 5/8" REBAR RLS 1797 WITH NOTCHED STONE ALONG SIDE CLOSING SECTION CORNER Fd. 5/8" REBAR LS 1737 N 89'19'45" W ~ 0.59 " FROM TRUE CORNER CARSON RIVER GUIDE MERIDIAN TON R21E T200 R20E

SHOULD BE EXAMINED FOR ANY SUBSEQUENT

PARCEL 1 P.M. 3933



PCN18-0005 Vicinity Map

Exhibit 1

PCN18-0005 Existing Easement

Preliminary Sewer Report

For:

Wingfield Commons Sparks, Nevada

Prepared for:

Foothills at Wingfield, LLC

Prepared by:

20 Vine Street Reno, NV 89503

March 6, 2018

RECEIVED-CITY OF SPARKS

MAR 0 8 2018

COMMUNITY SERVICES ADMINISTRATION

1.0 Introduction

The purpose of this preliminary report is to address the sanitary sewerage impacts that may result from the proposed Wingfield Commons development, in accordance with the City of Sparks development standards and sound engineering practices. This report will quantify the estimated sanitary sewer flows to be generated by the proposed project and will analyze the impacts of this development on the existing downstream facilities. Potential mitigation measures will also be discussed. It is anticipated that a more in-depth sewer report will be provided during the Tentative Map phase of the project.

2.0 Location and Background

The proposed development is located approximately eight miles north of Interstate 80 off of Vista Boulevard, within Section Eighteen (18), Township Twenty (20) North, Range Twenty-One (21) East, Mount Diablo Meridian, City of Sparks, County of Washoe, State of Nevada. The site is southeast of the existing Wingfield Springs Planned Development, south of the existing Foothills Planned Development, and directly east of Golden Eagle Regional Park. The property consists of three parcels identified by the Washoe County Assessor's Office as APN 084-550-02, 084-550-07 and 084-550-08.

The site is located in a broad, relatively flat valley east of Spanish Springs Valley, surrounded by the Pah Rah Range to the east, Spanish Springs Canyon to the south and Canoe Hill to the west. Surface drainage through the site is generally south-to-north, with an eventual connection to the main drainage channel that flows in a southerly direction through Spanish Springs Valley to the Truckee River via the North Truckee Drain along Sparks Boulevard.

The subject property is generally vacant with an unoccupied single-family residence and several outbuildings. The area to the west is developed as Golden Eagle Regional Park (GERP), opened in 2008. The area to the south, east and north is currently undeveloped BLM land. The site also abuts four smaller parcels that are outside of the city's incorporated limits.

The previous 2009 draft planned-development handbook, consisted of a mixed-use project containing residential, commercial and open space components, with an estimated peak sewer flow of approximately 563,000 gallons per day.

3.0 Project Description and Assumptions

The currently-proposed Wingfield Commons development will consist of up to 500 single-family dwelling units. Utilizing an average daily dry weather wastewater flow (ADWF) of 210 gallons per day per dwelling unit, the estimated daily flow for the project is 105,000 gallons per day. This is consistent with the November 2016 Sewer Model Update Report, prepared by Atkins. It is anticipated that the project will be phased over several years, with approximately 100 single-family homes built per phase.

4.0 Existing Sanitary Sewer Infrastructure

The subject property is not currently connected to the city sewer system. The nearest potential connection point is located approximately 1,800 feet northwest of the site, adjacent to the City of Sparks maintenance facility for GERP. This location currently contains a small lift station that conveys sewer flows from GERP via a force main to a gravity manhole located on the nearby fire station property. The gravity trunk main then flows generally in a northwesterly direction through several residential streets and cross-country easements to Cinnamon Drive, then west to Wingfield Springs Road, then southwest through the Wingfield Springs development to the existing 30-inch interceptor in Vista Boulevard, and eventually to the Truckee Meadows Water Reclamation Facility (TMWRF).

Based on information provided in a preliminary sewer capacity analysis prepared by Atkins on January 12, 2018, there are portions of the existing trunk sewer main that currently do not meet the city's "d/D" dry-weather flow (DWF) capacity criteria. These d/D criteria violations exist without the additional flows that would be generated by the proposed Wingfield Commons project. To address these violations, the November 2016 Sewer Model Update Report, prepared by Atkins proposed Capital Improvement Projects (CIP) #12 and #14 to upsize two existing segments of gravity sewer mains along Cinnamon Drive and Wingfield Springs Road. (Refer to the January 12, 2018 Atkins Report in Appendix A for maps and diagrams of the offsite trunk sewer main).

5.0 Proposed Sanitary Sewer Infrastructure

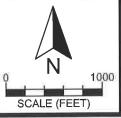
The proposed project will consist of a network of 8-inch gravity sewer mains located within the various proposed streets to collect flows from the individual dwelling units. The sewer mains shall be designed to provide a minimum velocity of 2 feet per second flowing half full. Sewer manholes will be provided at junctions and angle points, with spacings of no more than 400 feet for maintenance access. Because of an elevation conflict with the existing trapezoidal drainage channel located west of the site, a gravity connection cannot be provided to the nearest existing sewer manhole located on the fire station property. Therefore, it is anticipated that the existing lift station located east of the city maintenance building will need to be rebuilt, with a deeper wet well to allow a gravity connection from the proposed Wingfield Commons development. This scenario is preferred over having two separate lift stations.

Additionally, based on the January 12, 2018 Atkins Report, there is an existing section of cross-county 8-inch sewer main located southwest of Centaurus Drive that will require upsizing under full buildout conditions of the proposed Wingfield Commons development.

It is anticipated that a more in-depth analysis, based actual sewer flows will be required to establish a timeframe for the required off-site improvements, based on the number of lots constructed during each proposed phase of the project. Foothills at Wingfield, LLC will work with the city through the Tentative Map process to ensure all required offsite sewer improvements are properly planned and conditioned.

6.0 Conclusions

Full buildout of the proposed Wingfield Commons development will require certain off-site improvements to existing sewer infrastructure, including completion of CIP #12 and #14, upgrade of the existing lift station located adjacent to the city maintenance building, and upsizing of a section of 8-inch cross-county gravity sewer main located near Centaurus Drive.


The proposed improvements noted above will ensure there is adequate capacity within the city's sewer network to serve full buildout of the proposed development. The final implementation schedule of all offsite sewer system improvements will be coordinated with the City through the Tentative Map process.

Enclosures

Exhibit A – Wingfield Commons Preliminary Land Plan Appendix A – January 12, 2018 Atkins Report prepared for the City of Sparks

PRELIMINARY LAND PLAN

WINGFIELD COMMONS SPARKS, NEVADA MARCH 2018 EXHIBIT "A"

Memo

To:	Andy Hummel, P.E., City of Sparks				: Andy Hummel, P.E., City of Sparks	
From:	Brian Janes, P.E., Atkins					
Date:	January 12, 2018					
Subject:	Golden Eagle Development-Capacity Analysis City of Sparks Sewer Model Update					

Per the request of the City, Atkins performed a preliminary capacity analysis of the existing sanitary sewer system downstream of the proposed Golden Eagle Development (herein referred to as the "Project"). The purpose of this analysis was to determine the potential impacts to the existing sanitary sewer system resulting from the planned single family housing development proposed at the 59.92 acre parcel (APN: 084-550-02) located east along the Golden Eagle Trail (see attached **Figure 1**). This Project was originally planned to have 330 Single Family Residential dwelling units but per the latest information from the City of Sparks, the Project will now comprise of 500 dwelling units. The Project flows in the 2016 Sewer Model Update Technical Report entered the hydraulic model at manhole SSN004820 at the intersection of the Spanish Springs Trail and Wingfield Comm Trail. However, as part of this study an 8 inch sewer line from SSN035828 (near Vista Blvd) to SSN004820 was modeled, and now the Project flow from this parcel enters the hydraulic model at SSN035828. This memorandum summarizes the preliminary findings from the analysis of the 8 inch sewer line and the additional number of dwelling units associated with the Project.

Wastewater Flows and Hydraulic Model

In modeling the wastewater generated from the proposed development, Atkins used the average daily dry weather wastewater flow (ADWF) unit generation rates recommended in **Table 3-7** of the 2016 Sewer Model Update Technical Report. **Table 1** below summarizes the estimated wastewater flows generated from the new development.

Table 1 Wastewater Generation Model Loading

Proposed Development Land Use ¹	Recommended Unit Wastewater Generation Rate ²	Average Daily Flow (gpd)	
Single Family Residential (500 DU)	210 gpd/DU	105,000	
	Total ADWF =	105,000	

Notes:

¹Total number of dwelling units (500) provided by City of Sparks in December 2017, is more than the units assumed (330) for this parcel at the time of developing buildout land use model for the 2016 Sewer Model Update Technical Report

² Recommended unit wastewater generation rates referenced from the 2016 Sewer Model Update Technical Report

ADWF = average daily dry weather flow

These wastewater flows were loaded into the current version of a City of Sparks InfoSWMM hydraulic model (originally completed by Atkins, November 3, 2016 as part of the 2016 Sewer Model Update Technical Report). The following models scenarios were simulated to determine the impact of the project: (1) existing condition dry weather flow (DWF) and wet weather flow (WWF) models (including the proposed Project anticipated flows) and (2) buildout condition dry and wet weather flow models (including the proposed Project anticipated flows).

Based on calibrated diurnal patterns for typical single family residential developments, the estimated peak dry weather flow (PDWF) from this development is approximately 0.143 MGD. Additionally, based on calibrated wet weather flow parameters determined in the 2016 Sewer Model Update Technical Report, the estimated peak wet weather flow (PWWF) for this development is approximately 0.189 MGD.

Existing Condition Model Results

Figure 2 compares the d/D modeling results for the sewer system between the existing condition scenario and the existing condition plus the proposed development scenario to determine the potential downstream capacity impacts from the development. The existing condition plus the proposed development scenario includes the

Memo

estimated ADWF of 0.105 MGD from the proposed Project in the model simulation. The criteria used to evaluate the sewer system are listed in **Table 4-6** of the 2016 Sewer Model Update Technical Report.

In the existing condition (without project), there is a d/D violation occurring at SSL015161, and immediately downstream of this conduit, the d/D values are close to 0.5, from Centaurus Dr to Cinnamon Dr. To address these violations, the 2016 Report proposed CIP 12 in Section 5.3.1 of the 2016 Sewer Model Update Technical Report. The existing condition CIP consists of upsizing the sewer from Centaurus Dr to Cinnamon Dr (SSL015161 to SSL002982) from 10 inch and 12 inch to 15 inches.

As shown in **Figure 2**, the sewer flows from the proposed development results in minor d/D DWF criteria violations at multiple conduits from SSL015161 to SSL002987 (d/D = 0.52 to 0.64) along the Centaurus Dr to Cinnamon Dr sewer. These violations also include a violation (d/D = 0.64) at the end of the newly modeled 8 inch sewer line at SSL015546. In the existing condition model (without project), this line has a d/D of 0.5 which is at the criteria limit.

Buildout Condition Model Results

Figure 3 compares the d/D modeling results for the sewer system between the original buildout condition scenario developed in the 2016 Report and the buildout condition with the proposed development scenario to determine the potential future downstream capacity impacts from the 170 dwelling units proposed with the development.

The original buildout scenario in 2016 had assumed a total of 330 dwelling units for the Project which generated an ADWF value of 0.0693 MGD. However, per the latest City of Sparks information, the development will have 500 dwelling units and generates higher wastewater flows as compared to the original buildout condition, with an ADWF value of 0.105 MGD (ADWF increase of 0.0357 MGD).

In the original buildout condition, there are d/D DWF criteria violations occurring at multiple conduits from Centaurus Dr to Cinnamon Dr, from SSL001561 and SSL005781, caused by the proposed developments of Wingfield Springs and The Foothills at Wingfield springs, where the Project is located. To address these violations, the 2016 Report proposed buildout condition CIP 14 in Section 5.3.2 of the 2016 Sewer Model Update Technical Report. The CIP consists of upsizing the Wingfield Springs Rd sewer (SSL002986 to SSL005755) from a 15 inch size to a 18 inch size pipe. Implementation of CIP 12 and 14 eliminate d/D violations downstream of the newly modeled 8 inch sewer line.

The 8 inch sewer line modeled as part of this study indicates there will be d/D violations towards its junction with Centaurus Dr sewer at SSL015546 and SSL002985. Implementing both CIPs (CIP 12 and CIP 14) reduces the d/D violations to 0.53 at SSL015546 and 0.51 at SSL002985 but does not eliminate the violations. If an additional improvements are constructed to increase these 3 pipe segments to 10 inches, the d/D violations are reduced to less than 0.42.

Conclusions

The updated higher number of dwelling units results in higher sewage generation from the Project, when compared with the original buildout condition. The higher flows result in d/D DWF criteria violations in the Centaurus Dr to Cinnamon Dr sewer line in the existing condition. There is also a violation in the 8 inch sewer line that has been modelled at its junction with the Centaurus sewer. CIP 12 was proposed in Section 5.3.1 of the 2016 Sewer Model Update Technical Report and addresses the d/D violations in the Centaurus Dr sewer.

In the buildout condition in the 2016 Sewer Model Update, the Golden Eagle development combined with the other Wingfield Springs developments in the vicinity, and the consequent wastewater flows and d/D DWF criteria violations, triggered the formulation of CIP 14. The latest City information for the higher dwelling units on the Project parcels increases the generation of wastewater flows, and results in marginally higher d/D criteria violations, when compared with original buildout condition. Applying CIP 12 and CIP 14 addresses the d/D violations occurring in the Centaurus Dr to Wingfield Springs sewer, however does not address criteria violations in the newly modeled 8 inch sewer line.

The 8 inch sewer line from SSN035828 to SSN004820 has marginal d/D violations even after implementing CIP 12 and CIP 14 near its junction with the Centaurus Dr sewer. Two pipes on this line, SSL015546 and SSL002985 have d/D values of 0.53 and 0.51 respectively. Increasing the pipe size from SSL002985 to

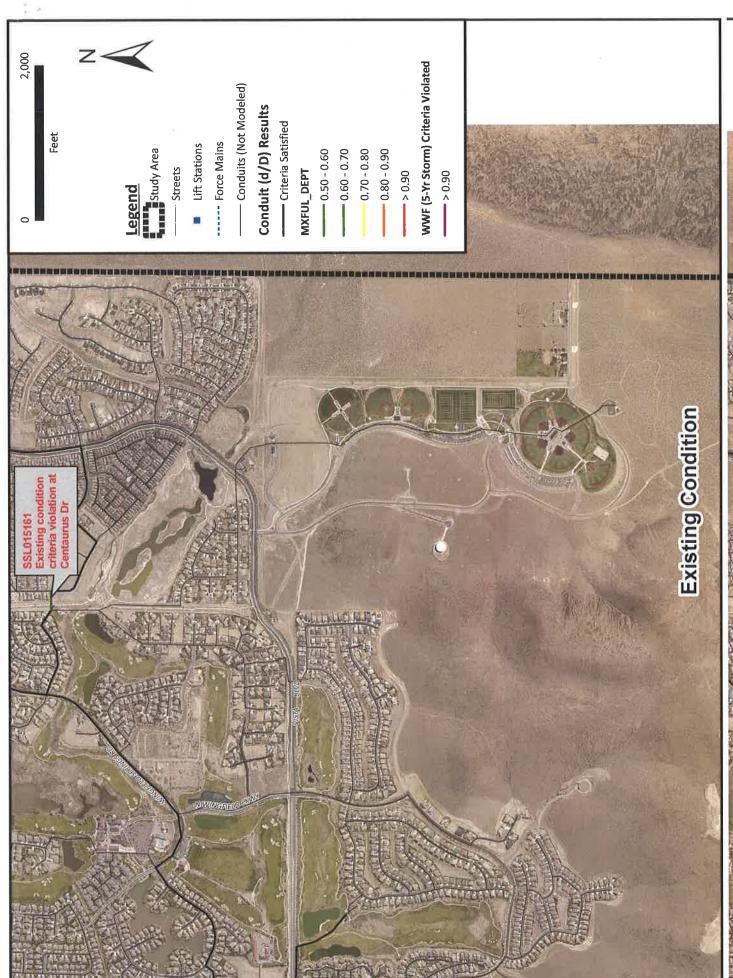
APPENDIX A


Memo

ATKINS

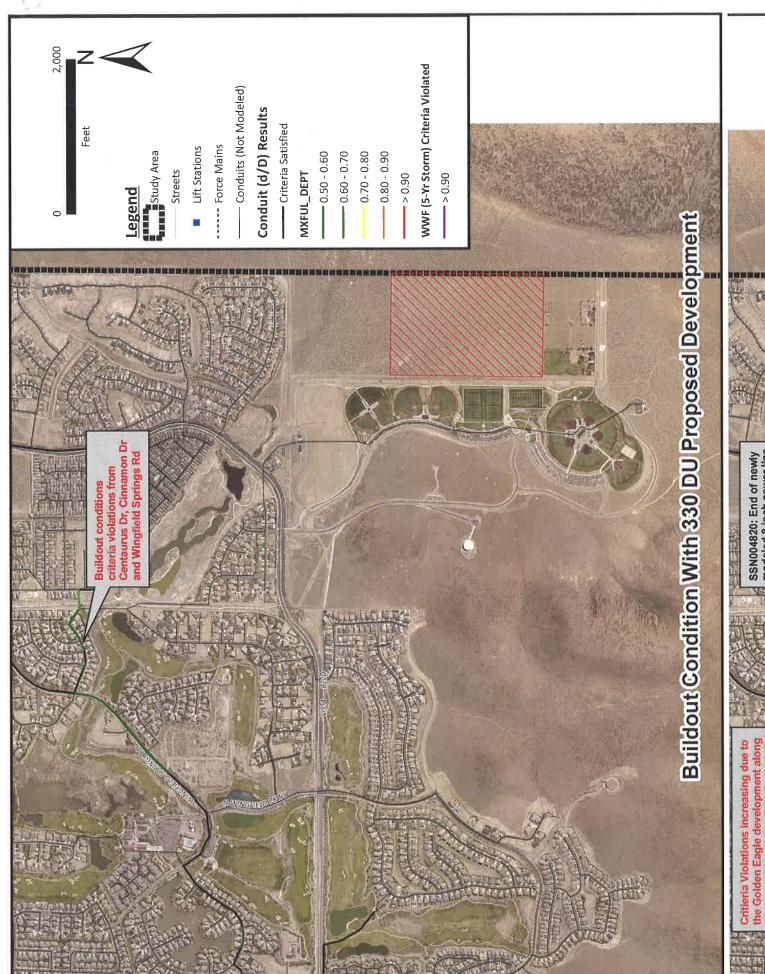
SSL015546 from 8 inches to 10 inches (total length 615 ft) removes these violations. However, these 8 inch sewer violations can be approached in different ways.

- Since, the criteria violations in the 8 inch sewer line are marginal, and are localized, with no further violations to the system downstream after the implementation of CIP 12 and CIP 14, the City may want to confirm model criteria violations with actual performance data prior to deciding whether to upsize the 8 inch sewer line.
- Upgrade the 8 inch sewer from SSL002985 to SSL015546 to 10 inches. This completely removes the d/D violations in this line


The existing system does not have adequate capacity to convey the project flows and meet criteria without implementation of CIPs. In the buildout condition without CIPs, the criteria violations increase. Implementing planned CIPs 12 and 14 appear to adequately address sewer lines modeled with the master plan however minor criteria violations remain in the newly modeled 8 inch sewer line to the project. Increasing three sections of the 8 inch sewer line to 10 inches is expected to adequately address these violations in both the existing condition and buildout condition.

ATKINS

<u>Sewer Model Update</u> Golden Eagle Development - Vicinity Map Figure 1



Sewer Model Update
Existing Condition Comparison - Golden Eagle Development

Figure 2

Sewer Model Update

Figure 3

Buildout Condition Comparison - Golden Eagle Development

WINGFIELD COMMONS TRAFFIC STUDY

JULY 2018

Prepared by: Solaegui Engineers, Ltd. 715 H Street Sparks, Nevada 89431 (775) 358-1004

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
INTRODUCTIONSTUDY AREAEXISTING AND PROPOSED LAND USES	5
EXISTING AND PROPOSED ROADWAYS AND INTERSECTIONS	5
TRIP GENERATION	7
TRIP DISTRIBUTION AND ASSIGNMENT	8
EXISTING AND PROJECTED TRAFFIC VOLUMES	8
INTERSECTION CAPACITY ANALYSIS	17
QUEUING ANALYSIS	20
TRAFFIC CRASH REVIEW	22
SITE PLAN REVIEW	22
RECOMMENDATIONS	23
APPENDIX	24
LIST OF FIGURES	
FIGURE 1 - VICINITY MAP	6
FIGURE 2 - TRIP DISTRIBUTION	9
FIGURE 3 - TRIP ASSIGNMENT	10
FIGURE 4A - EXISTING TRAFFIC VOLUMES	11
FIGURE 4B - EXISTING TRAFFIC VOLUMES (W/EVENT)	12
FIGURE 5A - EXISTING PLUS PROJECT TRAFFIC VOLUMES	13
FIGURE 5B - EXISTING PLUS PROJECT TRAFFIC VOLUMES (W/EVENT)	14
FIGURE 6 - 2040 BASE TRAFFIC VOLUMES (W/EVENT)	15
FIGURE 7 - 2040 BASE PLUS PROJECT TRAFFIC VOLUMES (W/EVENT)	16

WINGFIELD COMMONS TRAFFIC STUDY

EXECUTIVE SUMMARY

The proposed Wingfield Commons development is located in the City of Sparks, Nevada. The project site is located directly east of the Golden Eagle Regional Park (GERP) generally south of Vista Boulevard and east of Homerun Drive. The project site is currently undeveloped land except for a few dwelling units that will be removed. The purpose of this study is to address the project's impact upon the adjacent street network. The Vista Boulevard/Homerun Drive/Scorpius Drive, Homerun Drive/Touchdown Drive, and Touchdown Drive/Project Access intersections have been identified for weekday and Saturday AM and PM peak hour capacity analysis for the existing (without GERP event), existing plus project (without GERP event), existing plus project (with GERP event), 2040 base (with GERP event), and 2040 base plus project (with GERP event) scenarios.

The proposed Wingfield Commons development will consist of the construction of 450 single family dwelling units. Project access will be provided from a new proposed access roadway intersecting Touchdown Drive. Wingfield Commons is anticipated to generate 4,248 average daily trips, 333 AM peak hour trips, and 446 PM peak hour trips on a typical weekday and 4,293 average daily trips, 170 AM peak hour trips, and 419 PM peak hour trips on a typical Saturday.

Traffic generated by the Wingfield Commons development will have some impact on the adjacent street network. The following recommendations are made to mitigate project traffic impacts.

It is recommended that any required signing, striping, or traffic control improvements comply with City of Sparks requirements.

It is recommended that the Vista Boulevard/Homerun Drive/Scorpius Drive intersection be improved to include one exclusive left turn lane, one shared left turn-through lane, and one exclusive right turn lane at the south approach.

It is recommended that the existing right turn lane at the west approach of the Vista Boulevard/ Homerun Drive/Scorpius Drive intersection be lengthened to provide a minimum of 465 feet of storage/deceleration length with a 180 foot taper in order to serve traffic volumes generated by a major event at the Golden Eagle Regional Park.

It is recommended that the traffic control at the Homerun Drive/Touchdown Drive intersection be modified to include stop sign control at the south and east approaches while the left turn and through movements at the north approach flow free. In addition, it is recommended that an exclusive left turn lane be provided at the north approach.

It is recommended that the Touchdown Drive/Project Access intersection be designed as a three-leg intersection with stop sign control at the east approach and contain an exclusive left turn lane at the north approach.

It is recommended that the project access roadway and the internal residential streets be designed to conform to City of Sparks standards.

It is recommended that connections be made from the proposed subdivision to the existing pedestrian/bicycle network within the Golden Eagle Regional Park.

It is recommended that the project developers provide a traffic circulation plan that discourages or prevents Golden Eagle Regional Park traffic from utilizing the project access road and internal residential streets.

INTRODUCTION

STUDY AREA

The proposed Wingfield Commons development is located in the City of Sparks, Nevada. The project site is located directly east of the Golden Eagle Regional Park (GERP) generally south of Vista Boulevard and east of Homerun Drive. Figure 1 shows the approximate location of the site. The purpose of this study is to address the project's impact upon the adjacent street network. The Vista Boulevard/Homerun Drive/Scorpius Drive, Homerun Drive/Touchdown Drive, and Touchdown Drive/Project Access intersections have been identified for weekday and Saturday AM and PM peak hour capacity analysis for the existing (without GERP event), existing (with GERP event), existing plus project (with GERP event), 2040 base (with GERP event), and 2040 base plus project (with GERP event) scenarios.

EXISTING AND PROPOSED LAND USES

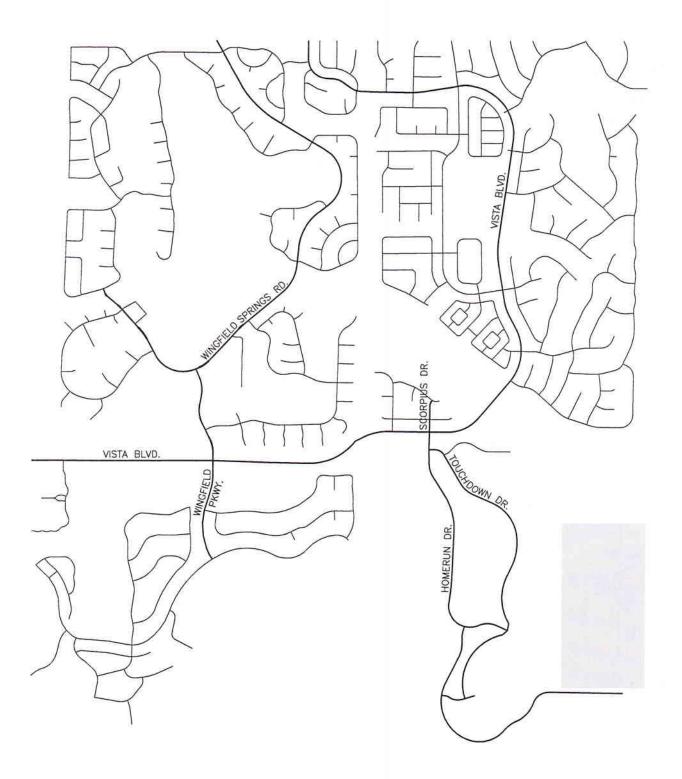
The project site is currently undeveloped land except for a few single family home that will be removed. Adjacent properties generally include the Golden Eagle Regional Park to the west and undeveloped land to the north, south, and east. The proposed Wingfield Commons development will consist of the construction of 450 single family dwelling units. Project access will be provided from a new proposed access road intersecting Touchdown Drive.

EXISTING AND PROPOSED ROADWAYS AND INTERSECTIONS

Vista Boulevard is a four-lane roadway with two through lanes in each direction in the vicinity of the site. The speed limit is posted for 35 miles per hour. Roadway improvements include curb, gutter, and bike lanes on both sides of the street, a sidewalk on the north side of the street, and a raised center median with openings at major intersections.

Homerun Drive is a two-lane roadway with one through lane in each direction south of Vista Boulevard. The speed limit is posted for 25 miles per hour. Roadway improvements include paved and graded shoulders with white striped edgelines and a yellow striped centerline. Homerun Drive aligns with Scorpius Drive at the Vista Boulevard intersection.

Scorpius Drive is a two-lane roadway with one through lane in each direction north of Vista Boulevard. The speed limit is not posted but assumed to be 25 miles per hour. Roadway improvements include curb, gutter, and sidewalk on both sides of the street. Scorpius Drive aligns with Homerun Drive at the Vista Boulevard intersection.


Touchdown Drive is a two-lane roadway with one through lane in each direction southeast of Homerun Drive. The speed limit is posted for 15 miles per hour. Roadway improvements include paved and graded shoulders with white striped edgelines and a yellow striped centerline.

SOLAEGUI ENGINEERS LTD.

LEGEND

PROJECT SITE

The Vista Boulevard/Homerun Drive/Scorpius Drive intersection is a signalized four-leg intersection with protected phasing for the eastbound and westbound left turn movements. The north approach contains one shared left turn-through-right turn lane. The south approach contains one left turn lane and one shared through-right turn lane. The east approach contains one left turn lane, one through lane, and one shared through-right turn lane. The west approach contains one left turn lane, two through lanes, and one right turn lane.

The Homerun Drive/Touchdown Drive intersection is an unsignalized three-leg intersections with stop control at the east approach. The intersection contains one shared left turn-through lane at the north approach, one shared through-right turn lane at the south approach, and one shared left turn-right turn lane at the east approach.

The Touchdown Drive/Project Access intersection does not exist but will be constructed as an unsignalized three-leg intersections with stop control at the east approach. At a minimum, the intersection will be analyzed with one shared left turn-through lane at the north approach, one shared through-right turn lane at the south approach, and one shared left turn-right turn lane at the east approach. This new intersection will be located south of an existing access intersection that will be removed.

TRIP GENERATION

In order to assess the magnitude of traffic impacts of the proposed project on the key intersections, trip generation rates and peak hours had to be determined. Trip generation was calculated based on rates obtained from the 10th Edition of ITE Trip Generation (2017) for Land Use 210: Single Family Detached Housing. Trips generated by the project were calculated for the weekday peak hours occurring between 7:00 and 9:00 AM and 4:00 and 6:00 PM, which correspond to the peak hours of adjacent street traffic, and the Saturday peak hour of generator which is assumed to correspond to the afternoon peak hour of the Golden Eagle Regional Park. ITE Trip Generation does not contain rates for a Saturday AM peak hour. Existing counts on Vista Boulevard indicate that Saturday AM peak hour traffic volumes are approximately 51% of weekday AM peak hour traffic volumes. The AM peak hour trip generation for Saturday was therefore assumed to be 51% of the weekday AM peak hour trip generation. Table 1 shows a summary of the average daily traffic (ADT) volumes and peak hour volumes generated by the project for a weekday and Saturday. The trip generation worksheets are included in the Appendix.

TABLE 1 TRIP GENERATION							
		AM PEAK HOUR			PM PEAK HOUR		
LAND USE	ADT	IN	OUT	TOTAL	IN	OUT	TOTAL
Single Family Detached Housing (450 D.U.) Weekday Saturday	4,248 4,293	83 42	250 128	333 170	281 226	165 193	446 419

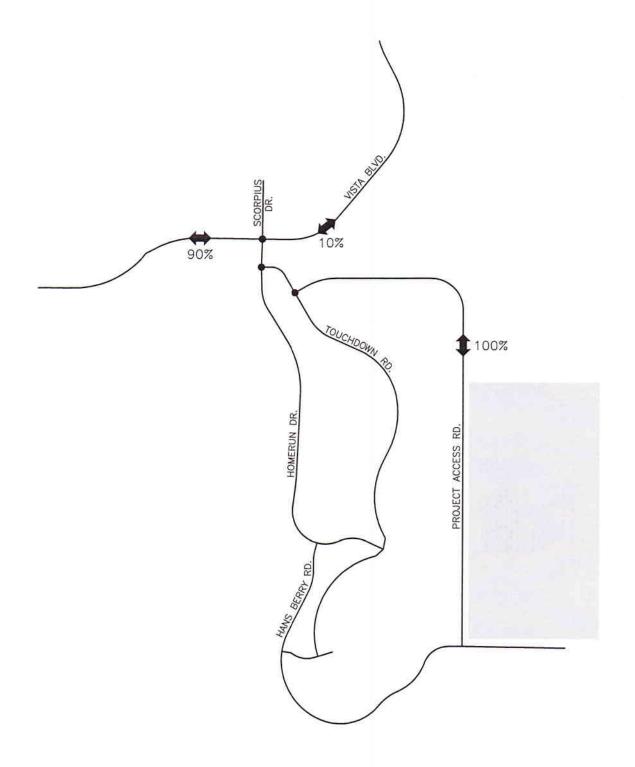
TRIP DISTRIBUTION AND ASSIGNMENT

The distribution of the project trips to the key intersections was based on existing peak hour traffic patterns and the locations of attractions and productions in the area. The anticipated trip distribution is shown on Figure 2. The peak hour project trips shown in Table 1 were subsequently assigned to the key intersections based on the trip distribution. Figure 3 shows the project trip assignment at the key intersections during the weekday and Saturday AM and PM peak hours.

EXISTING AND PROJECTED TRAFFIC VOLUMES

Figure 4A shows the existing peak hour volumes at the key intersections for the weekday AM, weekday PM, Saturday AM, and Saturday PM peak hour scenarios. The existing volumes were obtained from counts taken in February of 2018. The counts were adjusted to 100% of the annual average based on the requirement of City of Sparks staff. A major sporting event was not being held at the Golden Eagle Regional Park when the counts were conducted. Figure 4B shows the existing peak hour volumes (with GERP event) at the key intersections. The weekday AM and PM peak hour volumes were obtained by supplementing the existing volumes shown on Figure 4A with peak ingress and egress traffic volumes generated by a major event at the Golden Eagle Regional Park. The major event traffic volumes were obtained from City of Sparks Parks and Recreation staff. The Saturday AM and PM peak hour traffic volumes were obtained from counts conducted on April 28, 2018 and May 19, 2018 during GERP events identified by City of Sparks staff that included simultaneous baseball/softball/soccer games with high field utilization.

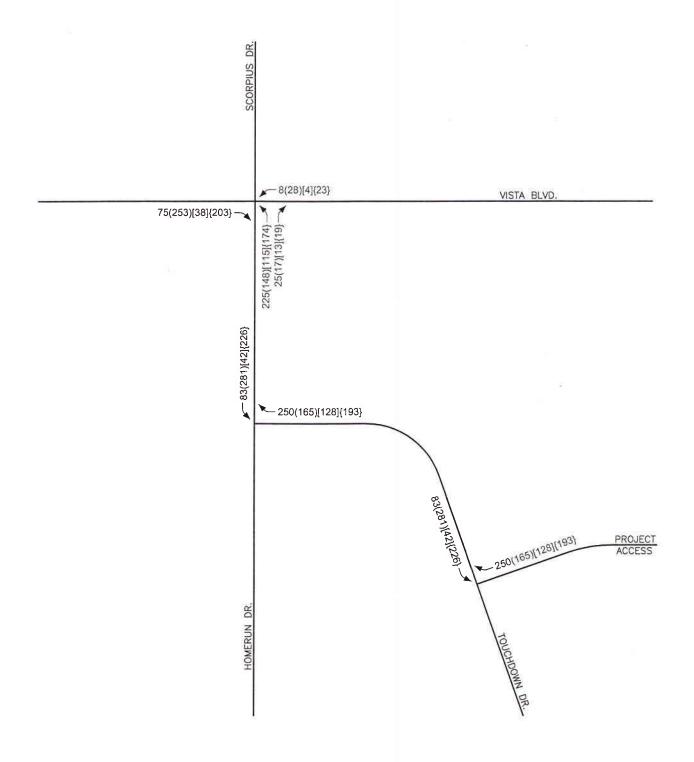
Figure 5A shows the existing plus project volumes at the key intersections for the weekday and Saturday AM and PM peak hours. The existing plus project volumes were obtained by adding the trip assignment volumes shown on Figure 3 to the existing volumes shown on Figure 4A. Again, these volumes do not include a major event at the Golden Eagle Regional Park. Figure 5B shows the existing plus project peak hour volumes (with GERP event) for the weekday and Saturday AM and PM peak hours. The existing plus project volumes (with GERP event) were obtained by adding the trip assignment volumes shown on Figure 3 to the existing traffic volumes (with GERP event) shown on Figure 4B. These volumes include a major event at the Golden Eagle Regional Park.


Figure 6 shows the 2040 base traffic volumes (with GERP event) for the weekday and Saturday AM and PM peak hours. The 2040 base traffic volumes were obtained by applying a 0.5% average annual growth rate to the existing Vista Boulevard traffic volumes. A 0.2% average annual growth rate was calculated based on 2015 and 2040 average daily traffic volumes obtained from the Regional Transportation Commission's traffic forecasting model. However, the 0.5% average annual growth rate was used in order to ensure conservative results. The 2040 base traffic volumes include a major event at the Golden Eagle Regional Park. Figure 7 shows the 2040 base plus project traffic volumes (with GERP event) for the weekday and Saturday AM and PM peak hours. The 2040 base plus project traffic volumes were obtained by adding the trip assignment volumes shown on Figure 3 to the 2040 base traffic volumes shown on Figure 6. The 2040 base plus project volumes include a major event at the Golden Eagle Regional Park.

SOLAEGUI ENGINEERS LTD.

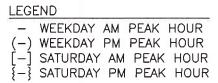
LEGEND

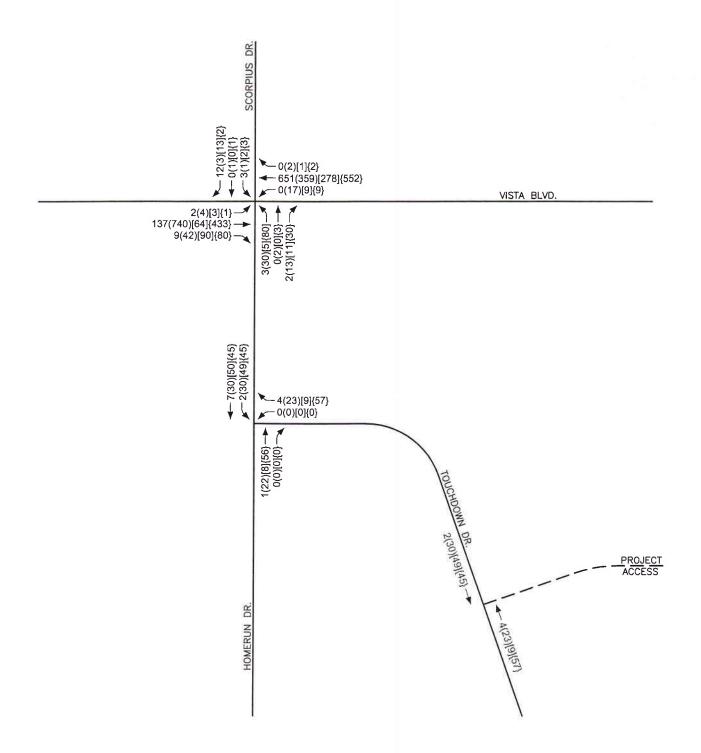
KEY INTERSECTIONS

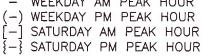

SOLAEGUI ENGINEERS LTD.

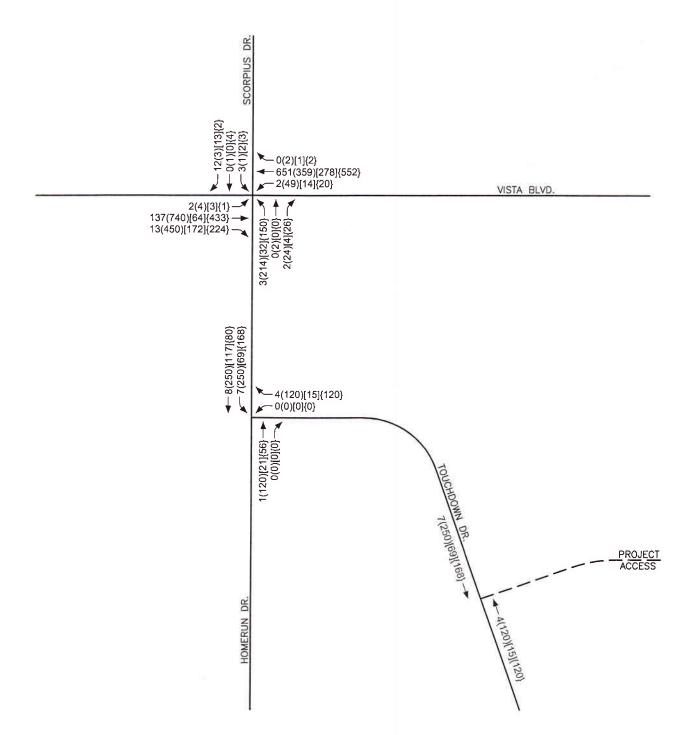
LEGEND

WEEKDAY AM PEAK HOUR


(-) WEEKDAY PM PEAK HOUR [-] SATURDAY AM PEAK HOUR {-} SATURDAY PM PEAK HOUR

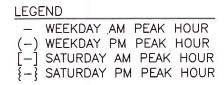


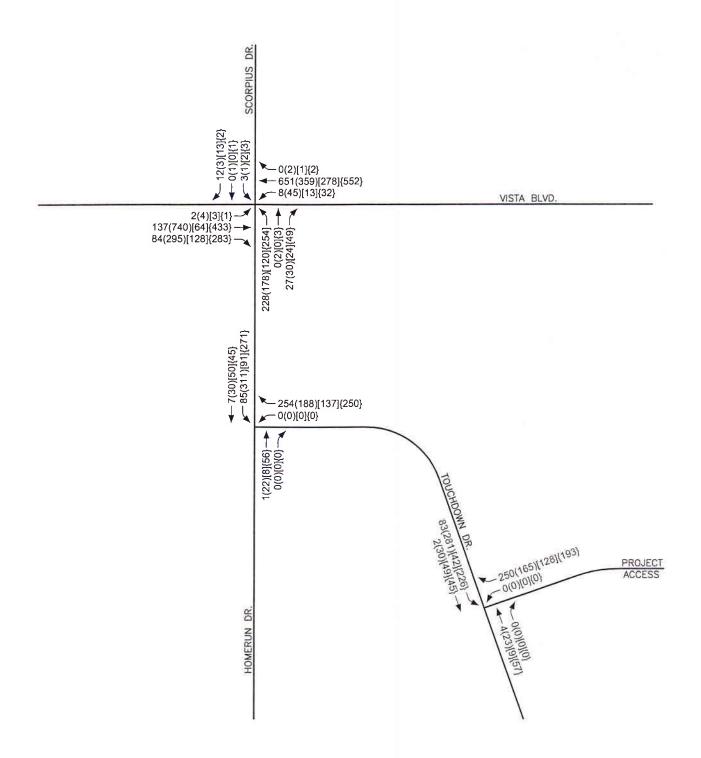




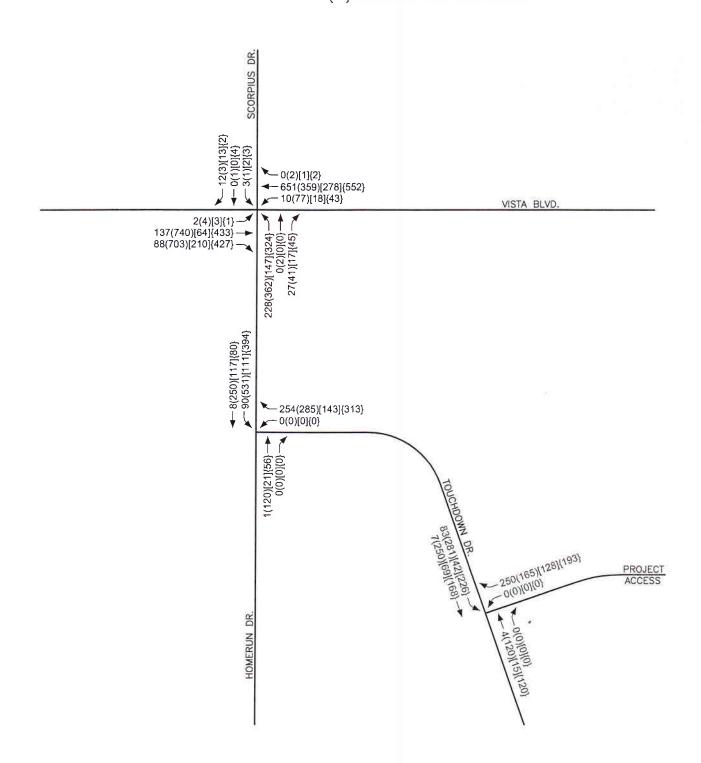
SOLAEGUI ENGINEERS LTD.

LEGEND

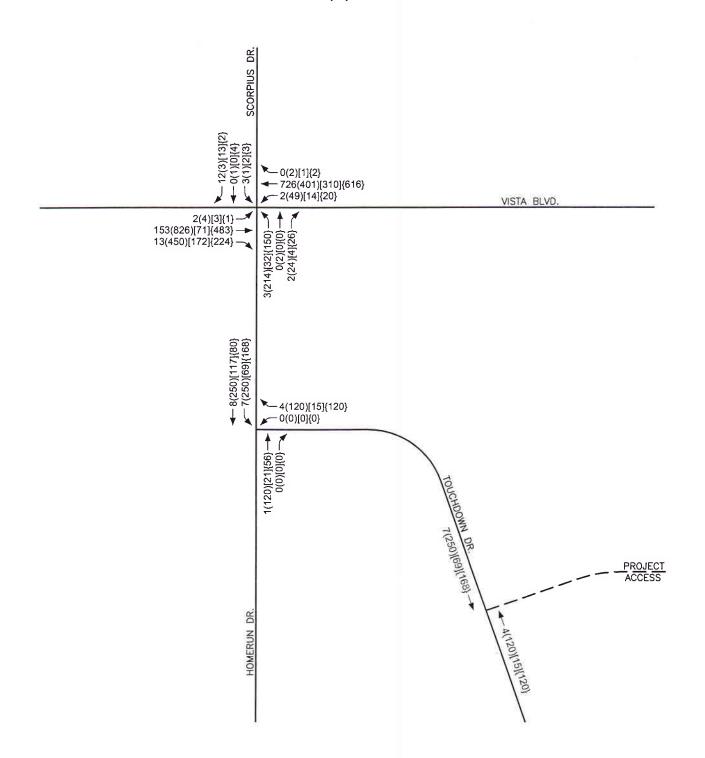

WEEKDAY AM PEAK HOUR



SOLAEGUI ENGINEERS LTD.



WEEKDAY AM PEAK HOUR (-) WEEKDAY PM PEAK HOUR [-] SATURDAY AM PEAK HOUR {-} SATURDAY PM PEAK HOUR WEEKDAY PM PEAK HOUR

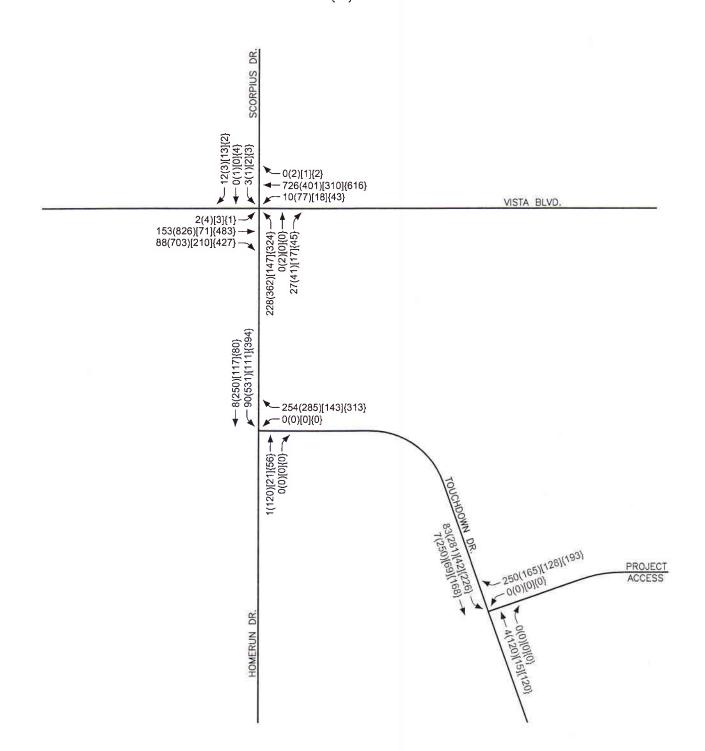

LEGEND

SOLAEGUI ENGINEERS LTD.

LEGEND

WEEKDAY AM PEAK HOUR

(-) WEEKDAY PM PEAK HOUR [-] SATURDAY AM PEAK HOUR {-} SATURDAY PM PEAK HOUR


LEGEND

- WEEKDAY AM PEAK HOUR

(-) WEEKDAY PM PEAK HOUR

[-] SATURDAY AM PEAK HOUR

{-} SATURDAY PM PEAK HOUR

INTERSECTION CAPACITY ANALYSIS

The key intersections were analyzed for capacity based on procedures presented in the *Highway Capacity Manual (6th Edition)*, prepared by the Transportation Research Board, for unsignalized and signalized intersections using the latest version of the Synchro computer software.

The result of capacity analysis is a level of service (LOS) rating for signalized intersections or minor movements at a two-way stop controlled intersection. Level of service is a qualitative measure of traffic operating conditions where a letter grade "A" through "F", corresponding to progressively worsening traffic operation, is assigned to the intersection or minor movement.

The *Highway Capacity Manual* defines level of service for stop controlled intersections in terms of computed or measured control delay for each minor movement. Level of service is not defined for the intersection as a whole. The level of service criteria for unsignalized intersections is shown in Table 2.

TABLE 2 LEVEL OF SERVICE CRITERIA FOR UNSIGNALIZED INTERSECTIONS							
LEVEL OF SERVICE	DELAY RANGE (SEC/VEH)						
A	≤10						
В	>10 and ≤15						
С	>15 and ≤25						
D	>25 and ≤35						
E	>35 and ≤50						
F	>50						

Level of service for signalized intersections is stated in terms of the average control delay per vehicle for a peak 15 minute analysis period. The level of service criteria for signalized intersections is shown in Table 3.

TABLE 3 LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS						
LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (SEC)					
A	≤10					
В	>10 and ≤20					
С	>20 and ≤35					
D	>35 and ≤55					
Е	>55 and ≤80					
F	>80					

Table 4A shows a summary of the level of service and delay results at the key intersections for the existing and existing plus project scenarios with no GERP event. The intersection capacity worksheets are included in the Appendix.

TABLE 4A INTERSECTION LEVEL OF SERVICE AND DELAY RESULTS EXISTING AND EXISTING PLUS PROJECT SCENARIOS (NO GERP EVENT)										
		EXIS	TING		EXISTING PLUS PROJECT					
INTERSECTION	WEEK AM	WEEK PM	SAT. AM	SAT. PM	WEEK AM	WEEK PM	SAT. AM	SAT. PM		
Vista/Homerun/Scorpius Signalized w/Existing Lanes	A8.6	B10.1	A8.8	B10.1	B14.4	B13.3	B11.5	B15.1		
Homerun/Touchdown Stop at East Leg WB Left-Right SB Left	A8.3 A7.2	A8.5 A7.3	A8.4 A7.3	A8.8 A7.4	A9.5 A7.4	A9.3 A7.9	A8.9 A7.4	B10.0 A7.9		
Touchdown/Project Access Stop at East Leg WB Left-Right SB Left	N/A N/A	N/A N/A	N/A N/A	N/A N/A	A9.5 A7.4	A9.8 A7.9	A8.9 A7.3	A9.6 A7.8		

Table 4B shows a summary of the level of service and delay results at the key intersections for the existing and existing plus project scenarios with a GERP event. The intersection capacity worksheets are included in the Appendix.

TABLE 4B INTERSECTION LEVEL OF SERVICE AND DELAY RESULTS EXISTING AND EXISTING PLUS PROJECT SCENARIOS (WITH GERP EVENT)										
		EXIS	TING		EXISTING PLUS PROJECT					
INTERSECTION	WEEK	WEEK	SAT.	SAT.	WEEK	WEEK	SAT.	SAT.		
	AM	PM	AM	PM	AM	PM	AM	PM		
Vista/Homerun/Scorpius Signalized w/Existing Lanes	A9.5	B15.0	B10.2	B12.2	B14.4	D41.3	B13.4	B18.4		
Homerun/Touchdown Stop at East Leg WB Left-Right SB Left	A8.3	A9.6	A8.5	A9.1	A9.5	B11.0	A9.0	B10.5		
	A7.2	A8.1	A7.4	A7.7	A7.4	A9.2	A7.5	A8.3		
Touchdown/Project Access Stop at East Leg WB Left-Right SB Left	N/A	N/A	N/A	N/A	A9.5	A9.9	A8.9	B10.1		
	N/A	N/A	N/A	N/A	A7.4	A8.2	A7.3	A8.0		

Table 4C shows a summary of the level of service and delay results at the key intersections for the 2040 base and 2040 base plus project scenarios with a GERP event. The intersection capacity worksheets are included in the Appendix.

TABLE 4C INTERSECTION LEVEL OF SERVICE AND DELAY RESULTS 2040 BASE AND 2040 BASE PLUS PROJECT SCENARIOS (WITH GERP EVENT)											
		2040	BASE		2040	BASE PI	LUS PRO.	IECT			
INTERSECTION	WEEK AM	WEEK PM	SAT. AM	SAT. PM	WEEK AM	WEEK PM	SAT. AM	SAT. PM			
Vista/Homerun/Scorpius Signalized w/Existing Lanes	A9.9	B15.2	A9.9	B12.5	B14.9	D41.1	B13.1	B18.9			
Homerun/Touchdown Stop at East Leg WB Left-Right SB Left	A8.3 A7.2	A9.6 A8.1	A8.5 A7.4	A9.1 A7.7	A9.5 A7.4	B11.0 A9.2	A9.0 A7.5	B10.5 A8.3			
Touchdown/Project Access Stop at East Leg WB Left-Right SB Left	N/A N/A	N/A N/A	N/A N/A	N/A N/A	A9.5 A7.4	A9.9 A8.2	A8.9 A7.3	B10.1 A8.0			

Vista Boulevard/Homerun Drive/Scorpius Drive Intersection

The Vista Boulevard/Homerun Drive/Scorpius Drive intersection was analyzed for capacity as a signalized four-leg intersection for all scenarios. The intersection currently operates at LOS B or better during the weekday and Saturday AM and PM peak hours with no GERP event. For the existing plus project traffic volumes (no GERP event) the intersection operates at LOS B during the weekday and Saturday AM and PM peak hours. With a GERP event, the intersection currently operates at LOS B or better during the weekday and Saturday AM and PM peak hours. For the existing plus project traffic volumes (with GERP event) the intersection operates at LOS B during the weekday AM and Saturday AM and PM peak hours and LOS D during the weekday PM peak hour. For the 2040 base traffic volumes (with GERP Event) the intersection operates at LOS B or better during the weekday and Saturday AM and PM peak hours. For the 2040 base plus project traffic volumes (with GERP event) the intersection operates at LOS B during the weekday AM and Saturday AM and PM peak hours and LOS D during the weekday PM peak hour. The intersection was analyzed with the existing approach lanes and signal phasing for all scenarios. The existing intersection meets policy LOS D or better operation for all scenarios.

Homerun Drive/Touchdown Drive Intersection

The Homerun Drive/Touchdown Drive intersection was analyzed as an unsignalized three-leg intersection with stop control at the east approach for all scenarios. The intersection minor movements currently operate at LOS A during the weekday and Saturday AM and PM peak hours with no GERP event. For the existing plus project traffic volumes (no GERP event) the intersection minor movements operate at LOS B or better during the weekday and Saturday AM and PM peak hours. With a GERP event, the intersection minor movements currently operate at LOS A during the weekday and Saturday AM and PM peak hours. For the existing plus project traffic volumes (with GERP event) the intersection minor movements operate at LOS B or better during the weekday and Saturday AM and PM peak hours. For the 2040 base traffic volumes (with GERP Event) the intersection minor movements operate at LOS A during the weekday and Saturday AM and PM peak hours. For the 2040 base plus project traffic volumes (with GERP event) the intersection minor movements operate at LOS B or better during the weekday and Saturday AM and PM peak hours. The intersection was analyzed with the existing approach lanes and traffic control for all scenarios. In summary, the existing intersection minor movements operate at acceptable LOS B or better for all scenarios and peak hours.

Touchdown Drive/Project Access Intersection

The Touchdown Drive/Project Access intersection was analyzed as an unsignalized three-leg intersection with stop control at the east approach for the "with project" scenarios. For the existing plus project traffic volumes (no GERP event) the intersection minor movements operate at LOS A during the weekday and Saturday AM and PM peak hours. For the existing plus project traffic volumes (with GERP event) the minor movements operate at LOS B or better during the weekday and Saturday AM and PM peak hours. For the 2040 base plus project traffic volumes (with GERP event) the intersection minor movements operate at LOS B or better during the weekday and Saturday AM and PM peak hours. The intersection was analyzed with single lanes at all approaches. However, it is recommended that an exclusive left turn lane be provided at the north approach. The left turn lane should be designed to maximize storage length. The proposed intersection minor movements operate at acceptable LOS B or better for all scenarios and peak hours.

QUEUING ANALYSIS

As previously discussed, the existing Vista Boulevard/Homerun Drive/Scorpius Drive intersection, the existing Homerun Drive/Touchdown Drive intersection, and the proposed Touchdown Drive/Project Access intersection are anticipated to operate at acceptable levels of service for all study scenarios and peak hours. However, the spacing of the Vista Boulevard/Homerun Drive and Homerun Drive/Touchdown Drive intersections could potentially result in queuing and storage conflicts on Homerun Drive. Approximately 210 feet of storage length is currently available from the stop bar at the south approach of the Vista Boulevard/Homerun Drive intersection to the north side of the Homerun Drive/Touchdown Drive intersection.

Queue lengths were subsequently reviewed at the south approach of the signalized Vista Boulevard/ Homerun Drive intersection. The capacity analysis results show 95th percentile queue lengths of less than 125 feet for the weekday and Saturday AM peak hours for the existing plus project (with and with GERP event) and 2040 base plus project (with GERP event) scenarios. These queue lengths can easily be accommodated within the ±210 feet available storage area on Homerun Drive with no impacts anticipated at the Homerun Drive/Touchdown Drive intersection. However, 95th percentile queue lengths of approximately 225 feet for the weekday PM peak hour and 200 feet for the Saturday PM peak hour are anticipated for the existing plus project (with GERP event) and the 2040 base plus project (with GERP event) scenarios. These weekday and Saturday PM peak hour queue lengths could exceed the ±210 feet available storage length on Homerun Drive resulting in potential impacts at the Homerun Drive/Touchdown Drive intersection. If the queue length extends south past Touchdown Drive then the southbound left turn movement at the Homerun Drive/Touchdown Drive intersection could potentially be blocked which in turn could result in the left turn queue extending northward onto Vista Boulevard.

In order to prevent potential blockage of the Homerun Drive/Touchdown Drive intersection it is recommended that the Vista Boulevard/Homerun Drive intersection be improved to include an additional left turn lane at the south approach and the Homerun Drive/Touchdown Drive intersection be modified to include stop sign control at both the east and south approaches. "Do Not Block Intersection" pavement markings and appropriate signage are also suggested to inform motorists of the modified intersection operation. The south approach of the Homerun Drive/Touchdown Drive intersection is projected to serve the lowest volume of the three approaches based on the project buildout traffic volumes. In addition, it is recommended that the Homerun Drive/Touchdown Drive intersection be improved to include an exclusive left turn lane at the north approach. This left turn lane should be designed to maximize storage length.

Queuing was also reviewed for the existing right turn lane at the west approach of the Vista Boulevard/Homerun Drive intersection. The right turn lane currently contains approximately 125 feet of combined storage/deceleration length with a 180 foot taper. The capacity analysis results indicate 95th percentile queue lengths of approximately 100 feet or less for the eastbound right turn movement based on the existing plus project traffic volumes on a weekend and Saturday that do not include a GERP event. In addition to queue length, a desirable deceleration length of 115 feet is also needed based on the 35 mile per hour speed limit on Vista Boulevard for a total lane length of 215 feet. In summary, the right turn lane should contain a minimum of 215 feet of storage and deceleration length with a 180 foot taper in order to serve existing plus project traffic volumes during non-GERP events.

For GERP events, the Highway Capacity, Synchro, and SimTraffic results indicate an average 95th percentile queue length of ± 350 feet for the weekday PM peak hour. Again, a desirable deceleration length of 115 feet is also needed based on the 35 mile per hour speed limit on Vista Boulevard which results in a total length of 465 feet. The right turn lane should therefore be modified to contain a minimum of 465 feet of storage/deceleration length with a 180 foot taper in order to serve existing plus project and 2040 base plus project traffic volumes during a GERP event.

It is suggested that the modification of the Homerun Drive/Touchdown Drive intersection to include stop sign control at the south approach occur prior to construction of the first dwelling unit. It is suggested that the additional left turn lane at the south approach and the modified right turn lane at the west approach of the Vista Boulevard/Homerun Drive intersection and the additional left turn lane at the north approach of the Homerun Drive/Touchdown Drive intersection be installed prior to the construction of the 75th dwelling unit.

TRAFFIC CRASH REVIEW

Traffic crash data at the Vista Boulevard/Homerun Drive/Scorpius Drive and Homerun Drive/Touchdown Drive intersections was requested from NDOT Traffic Safety Engineering. Crash data was available for the Vista Boulevard/Homerun Drive/Scorpius Drive intersection for the study period from September 1, 2014 to September 1, 2017. A total of 6 crashes occurred at the Vista Boulevard/Homerun Drive/Scorpius Drive intersection during the three-year period with no fatalities reported. The crash type was 3 non-collisions, 2 rear-end collisions, and 1 sideswipe meeting collision. NDOT Traffic Safety Engineering reported that no crash data exists for the Homerun Drive/Touchdown Drive intersection.

SITE PLAN REVIEW

A copy of the preliminary site plan for the proposed Wingfield Commons development is included with this submittal. The site plan indicates that project access will be provided from a proposed access roadway that intersects Touchdown Drive. The access roadway will start at Touchdown Drive, extend easterly and then southerly along the east boundary of the Golden Eagle Regional Park, before terminating at Hans Berry Road. Various residential streets intersecting the project access road will provide access to the individual lots. The site plan indicates that an emergency access gate will be constructed at the north approach of the Hans Berry Road/Project Access intersection. It is recommended that the project access roadway and the internal residential streets be designed to conform to City of Sparks standards.

A shared pedestrian/bicycle path exists within the Golden Eagle Regional Park. This path connects with the existing sidewalk infrastructure at the signalized Vista Boulevard/Homerun Drive/Scorpius Drive intersection. It is recommended that the proposed subdivision provide a connection to the existing pedestrian/bicycle path within the Golden Eagle Regional Park. In addition, it is recommended that the project developers provide a traffic circulation plan that discourages or prevents Golden Eagle Regional Park traffic from utilizing the project access road and internal residential streets.

RECOMMENDATIONS

Traffic generated by the Wingfield Commons development will have some impact on the adjacent street network. The following recommendations are made to mitigate project traffic impacts.

It is recommended that any required signing, striping, or traffic control improvements comply with City of Sparks requirements.

It is recommended that the Vista Boulevard/Homerun Drive/Scorpius Drive intersection be improved to include one exclusive left turn lane, one shared left turn-through lane, and one exclusive right turn lane at the south approach.

It is recommended that the existing right turn lane at the west approach of the Vista Boulevard/ Homerun Drive/Scorpius Drive intersection be lengthened to provide a minimum of 465 feet of storage/deceleration length with a 180 foot taper in order to serve traffic volumes generated by a major event at the Golden Eagle Regional Park.

It is recommended that the traffic control at the Homerun Drive/Touchdown Drive intersection be modified to include stop sign control at the south and east approaches while the left turn and through movements at the north approach flow free. In addition, it is recommended that an exclusive left turn lane be provided at the north approach.

It is recommended that the Touchdown Drive/Project Access intersection be designed as a three-leg intersection with stop sign control at the east approach and contain an exclusive left turn lane at the north approach.

It is recommended that the project access roadway and the internal residential streets be designed to conform to City of Sparks standards.

It is recommended that connections be made from the proposed subdivision to the existing pedestrian/bicycle network within the Golden Eagle Regional Park.

It is recommended that the project developers provide a traffic circulation plan that discourages or prevents Golden Eagle Regional Park traffic from utilizing the project access road and internal residential streets.

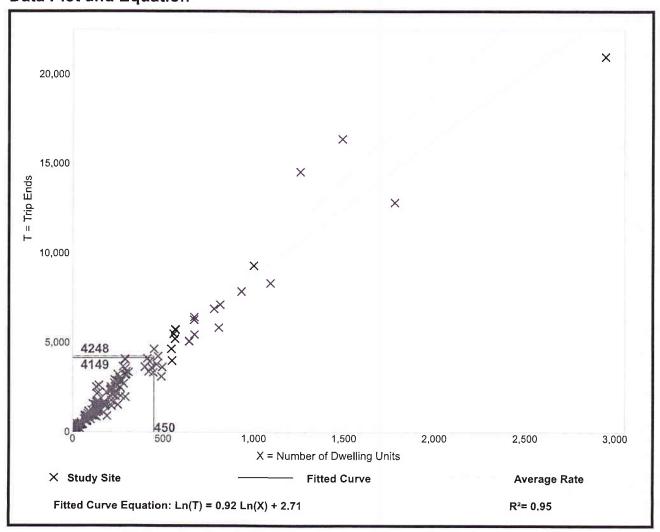
APPENDIX

Single-Family Detached Housing

(210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday


Setting/Location: General Urban/Suburban

Number of Studies: 159 Avg. Num. of Dwelling Units: 264

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.44	4.81 - 19.39	2.10

Single-Family Detached Housing

(210)

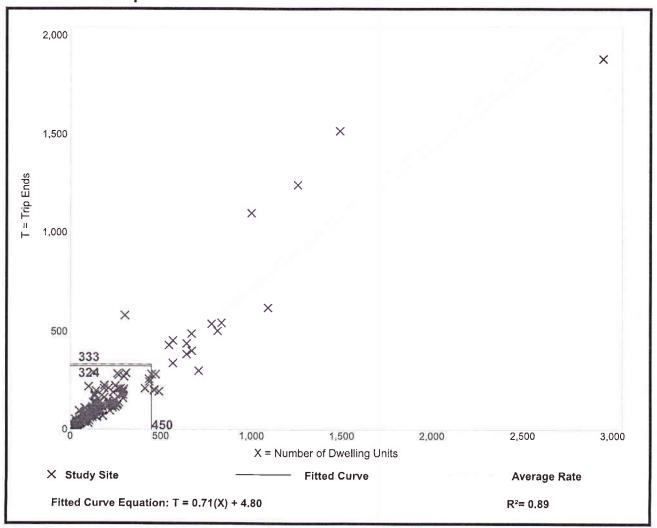
Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies:


173

Avg. Num. of Dwelling Units: 219

Directional Distribution: 25% entering, 75% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.74	0.33 - 2.27	0.27

Single-Family Detached Housing

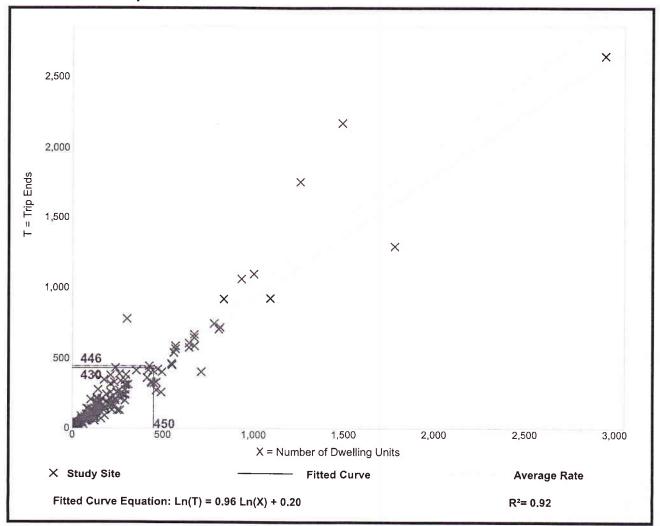
(210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 190

Avg. Num. of Dwelling Units: 242

Directional Distribution: 63% entering, 37% exiting

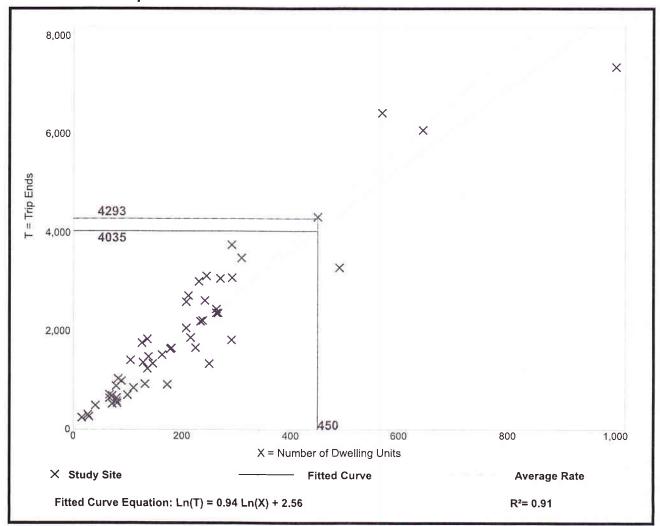
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.99	0.44 - 2.98	0.31
0.99	0.44 - 2.98	0.31

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units

On a: Saturday


Setting/Location: General Urban/Suburban

Number of Studies: 52 Avg. Num. of Dwelling Units: 207

Directional Distribution: 50% entering, 50% exiting

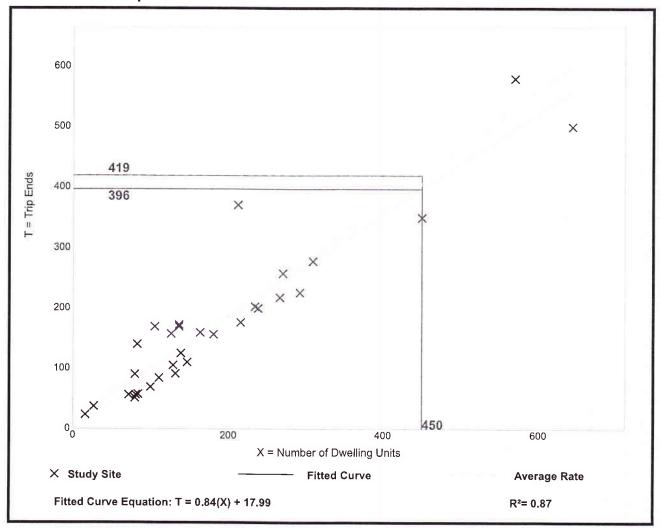
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.54	5.32 - 15.25	2 17

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units

On a: Saturday, Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: Avg. Num. of Dwelling Units: 188

Directional Distribution: 54% entering, 46% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.93	0.64 - 1.75	0,26

	۶	→	*	1	—	•	1	†	~	-	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	75	†		Ť	1>			4	
Traffic Volume (veh/h)	2	137	9	0	651	0	3	0	2	3	0	12
Future Volume (veh/h)	2	137	9	0	651	0	3	0	2	3	0	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	2	152	10	0	723	0	3	0	2	3	0	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	198	2369	1057	4	1579	0	319	0	176	111	17	144
Arrive On Green	0.11	0.67	0.67	0.00	0.44	0.00	0.11	0.00	0.11	0.11	0.00	0.11
Sat Flow, veh/h	1781	3554	1585	1781	3647	0	1401	0	1585	146	152	1292
Grp Volume(v), veh/h	2	152	10	0	723	0	3	0	2	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	0	1401	0	1585	1591	0	0
Q Serve(g_s), s	0.0	0.7	0.1	0.0	6.4	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	0.7	0.1	0.0	6.4	0.0	0.1	0.0	0.1	0.4	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		1.00	0.19		0.81
Lane Grp Cap(c), veh/h	198	2369	1057	4	1579	0	319	0	176	272	0	0
V/C Ratio(X)	0.01	0.06	0.01	0.00	0.46	0.00	0.01	0.00	0.01	0.06	0.00	0.00
Avail Cap(c_a), veh/h	198	2369	1057	198	1579	0	786	0	704	788	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	17.8	2.6	2.5	0.0	8.7	0.0	17.8	0.0	17.8	18.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	0.2	0.0	0.0	3.5	0.0	0.0	0.0	0.0	0.3	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	17.8	2.7	2.5	0.0	9.7	0.0	17.8	0.0	17.8	18.0	0.0	0.0
LnGrp LOS	В	Α	Α	Α	Α	Α	В	Α	В	В	Α	Α
Approach Vol, veh/h		164			723			5			16	
Approach Delay, s/veh		2.8			9.7			17.8			18.0	
Approach LOS		Α			Α			В			В	
Timer - Assigned Phs		2	3	4		6	7	8		STAY OF	11-20-10	MITA
Phs Duration (G+Y+Rc), s	11.	10.0	0.0	35.0		10.0	10.0	25.0				tues.
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		20.0	5.0	20.0		20.0	5.0	20.0				
Max Q Clear Time (g_c+l1), s		2.1	0.0	2.7		2.4	2.0	8.4				
Green Ext Time (p_c), s		0.0	0.0	0.8		0.0	0.0	3.7				
Intersection Summary			E /CENTE	13 FM	213181		BUDDE.	DATE OF STREET		STORY S		
HCM 6th Ctrl Delay	4,77		8.6									
HCM 6th LOS			Α									

	۶	\rightarrow	*	•	—	*	4	†	1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	75	↑ ↑		ሻ	4			4	
Traffic Volume (veh/h)	4	740	42	17	359	2	30	2	13	1	1	3
Future Volume (veh/h)	4	740	42	17	359	2	30	2	13	1	1	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	4	822	47	19	399	2	33	2	14	1	1	3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	198	1579	704	198	1611	8	318	22	157	112	57	110
Arrive On Green	0.11	0.44	0.44	0.11	0.44	0.44	0.11	0.11	0.11	0.11	0.11	0.11
Sat Flow, veh/h	1781	3554	1585	1781	3626	18	1412	202	1414	144	513	986
Grp Volume(v), veh/h	4	822	47	19	195	206	33	0	16	5	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1867	1412	0	1616	1644	0	0
Q Serve(g_s), s	0.1	7.5	0.8	0.4	3.1	3.1	0.8	0.0	0.4	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	7.5	0.8	0.4	3.1	3.1	0.9	0.0	0.4	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		0.88	0.20	0.0	0.60
Lane Grp Cap(c), veh/h	198	1579	704	198	790	830	318	0	180	279	0	0.00
V/C Ratio(X)	0.02	0.52	0.07	0.10	0.25	0.25	0.10	0.00	0.09	0.02	0.00	0.00
Avail Cap(c_a), veh/h	198	1579	704	198	790	830	789	0	718	809	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	17.8	9.0	7.2	18.0	7.8	7.8	18.2	0.0	18.0	17.8	0.0	0.0
Incr Delay (d2), s/veh	0.0	1.2	0.2	0.2	0.7	0.7	0.1	0.0	0.2	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	4.2	0.4	0.3	1.8	1.9	0.5	0.0	0.3	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	17.9	10.3	7.3	18.2	8.6	8.5	18.3	0.0	18.2	17.9	0.0	0.0
LnGrp LOS	В	В	Α	В	Α	Α	В	Α	В	В	Α	Α
Approach Vol, veh/h		873			420			49			5	6111
Approach Delay, s/veh		10.1			9.0			18.3			17.9	
Approach LOS		В			Α			В			В	
Timer - Assigned Phs	da ligit	2	3	4	E STEEL	6	7	8	SE TE	ALES A	TO ST	1143
Phs Duration (G+Y+Rc), s		10.0	10.0	25.0		10.0	10.0	25.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		20.0	5.0	20.0		20.0	5.0	20.0				
Max Q Clear Time (g_c+l1), s		2.9	2.4	9.5		2.1	2.1	5.1				
Green Ext Time (p_c), s		0.1	0.0	4.1		0.0	0.0	1.9				
Intersection Summary	TAGEN É		72 (AP)	13.6			ALS IS		Wal 10	No series		10,553
HCM 6th Ctrl Delay			10.1					1, 1		14 10		
HCM 6th LOS			В									

	*	-	*	•	+	*	4	†	~	1	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	1	↑ ↑		7	1→			4	
Traffic Volume (veh/h)	3	60	90	9	278	1	5	0	11	2	0	13
Future Volume (veh/h)	3	60	90	9	278	1	5	0	11	2	0	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	67	100	10	309	1	6	0	12	2	0	14
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	198	1579	704	198	1615	5	319	0	176	100	12	154
Arrive On Green	0.11	0.44	0.44	0.11	0.44	0.44	0.11	0.00	0.11	0.11	0.00	0.11
Sat Flow, veh/h	1781	3554	1585	1781	3633	12	1400	0	1585	94	105	1390
Grp Volume(v), veh/h	3	67	100	10	151	159	6	0	12	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1400	0	1585	1589	0	0
Q Serve(g_s), s	0.1	0.5	1.7	0.2	2.3	2.3	0.0	0.0	0.3	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	0.5	1.7	0.2	2.3	2.3	0.1	0.0	0.3	0.4	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.12	0.0	0.87
Lane Grp Cap(c), veh/h	198	1579	704	198	790	830	319	0	176	267	0	0
V/C Ratio(X)	0.02	0.04	0.14	0.05	0.19	0.19	0.02	0.00	0.07	0.06	0.00	0.00
Avail Cap(c_a), veh/h	198	1579	704	198	790	830	785	0	704	786	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	17.8	7.1	7.4	17.9	7.6	7.6	17.8	0.0	17.9	18.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.4	0.1	0.5	0.5	0.0	0.0	0.2	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	0.3	0.9	0.2	1.3	1.4	0.1	0.0	0.2	0.3	0.0	0.0
Unsig. Movement Delay, s/veh								5.0	0.2	0.0	0.0	0.0
LnGrp Delay(d),s/veh	17.8	7.1	7.8	18.0	8.1	8.1	17.9	0.0	18.1	18.0	0.0	0.0
LnGrp LOS	В	Α	Α	В	Α	Α	В	А	В	В	A	A
Approach Vol, veh/h		170			320			18			16	
Approach Delay, s/veh		7.7			8.4			18.0			18.0	
Approach LOS		Α			A			В			В	
Timer - Assigned Phs	300	2	3	4		6	7	8	000	The state of the s		20.017
Phs Duration (G+Y+Rc), s	7150	10.0	10.0	25.0		10.0	10.0	25.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		20.0	5.0	20.0		20.0	5.0	20.0				
Max Q Clear Time (g_c+l1), s		2.3	2.2	3.7		2.4	2.1	4.3				
Green Ext Time (p_c), s		0.0	0.0	0.6		0.0	0.0	1.4				
Intersection Summary							SELE		111			G T
HCM 6th Ctrl Delay		8 111	8.8									
HCM 6th LOS			Α									

AM Existing Saturday Synchro 10 Light Report

	1	→	*	•	+	*	1	†	-	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	75	∱ ∱		*	1→			43-	
Traffic Volume (veh/h)	_ 1	433	80	9	552	2	80	3	30	3	1	2
Future Volume (veh/h)	1	433	80	9	552	2	80	3	30	3	1	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	1	481	89	10	613	2	89	3	33	3	1	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	198	1579	704	198	1615	5	318	15	164	176	62	59
Arrive On Green	0.11	0.44	0.44	0.11	0.44	0.44	0.11	0.11	0.11	0.11	0.11	0.11
Sat Flow, veh/h	1781	3554	1585	1781	3633	12	1414	134	1472	505	556	530
Grp Volume(v), veh/h	1	481	89	10	300	315	89	0	36	6	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1414	0	1605	1591	0	0
Q Serve(g_s), s	0.0	3.9	1.5	0.2	5.1	5.1	2.5	0.0	0.9	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	3.9	1.5	0.2	5.1	5.1	2.6	0.0	0.9	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00	0,,	0.01	1.00	0.0	0.92	0.50	0.0	0.33
Lane Grp Cap(c), veh/h	198	1579	704	198	790	830	318	0	178	297	0	0.00
V/C Ratio(X)	0.01	0.30	0.13	0.05	0.38	0.38	0.28	0.00	0.20	0.02	0.00	0.00
Avail Cap(c_a), veh/h	198	1579	704	198	790	830	789	0	714	799	0	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	17.8	8.0	7.4	17.9	8.4	8.4	18.9	0.0	18.2	17.8	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.5	0.4	0.1	1.4	1.3	0.5	0.0	0.6	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	2.1	0.8	0.2	3.0	3.2	1.5	0.0	0.6	0.1	0.0	0.0
Unsig. Movement Delay, s/veh			0.0	0.12	0.0	0.2	1.0	0.0	0.0	0.1	0.0	0.0
LnGrp Delay(d),s/veh	17.8	8.5	7.7	18.0	9.7	9.7	19.4	0.0	18.7	17.9	0.0	0.0
LnGrp LOS	В	Α	Α	В	Α	Α	В	Α	В	В	A	A
Approach Vol, veh/h		571			625			125	THE T		6	
Approach Delay, s/veh		8.4			9.8			19.2			17.9	
Approach LOS		Α			A			В			В	
Timer - Assigned Phs		2	3	4		6	7	8	1386			OL I'T
Phs Duration (G+Y+Rc), s		10.0	10.0	25.0		10.0	10.0	25.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		20.0	5.0	20.0		20.0	5.0	20.0				
Max Q Clear Time (g_c+l1), s		4.6	2.2	5.9		2:1	2.0	7.1				
Green Ext Time (p_c), s		0.3	0.0	2,9		0.0	0.0	2.9				
Intersection Summary	49.57	Carlo Maria	19 TVL 3			Part le		OLD AND	L STATE	REVER	101014	5350
HCM 6th Ctrl Delay			10.1									
HCM 6th LOS			В									

	٠		*	1	+	*	1	†	~	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	∱ ⊅		Y	1→			4	
Traffic Volume (veh/h)	2	137	84	8	651	0	228	0	27	3	0	12
Future Volume (veh/h)	2	137	84	8	651	0	228	0	27	3	0	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	2	152	93	9	723	0	253	0	30	3	0	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	182	1306	583	182	1306	0	464	0	355	117	37	289
Arrive On Green	0.10	0.37	0.37	0.10	0.37	0.00	0.22	0.00	0.22	0.22	0.00	0.22
Sat Flow, veh/h	1781	3554	1585	1781	3647	0.00	1401	0.00	1585	134	164	1292
Grp Volume(v), veh/h	2	152	93	9	723	0	253	0	30	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	0	1401	0	1585	1590	0	0
Q Serve(g_s), s	0.0	1.4	1.9	0.2	7.9	0.0	7.9	0.0	0.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	1.4	1.9	0.2	7.9	0.0	8.2	0.0	0.7	0.4	0.0	0.0
Prop In Lane	1.00		1.00	1.00	7.0	0.00	1.00	0.0	1.00	0.19	0.0	0.81
Lane Grp Cap(c), veh/h	182	1306	583	182	1306	0.00	464	0	355	444	0	0.01
V/C Ratio(X)	0.01	0.12	0.16	0.05	0.55	0.00	0.55	0.00	0.08	0.04	0.00	0.00
Avail Cap(c_a), veh/h	182	1306	583	182	1306	0	779	0.00	712	791	0.00	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.8	10.2	10.4	19.8	12.3	0.0	17.9	0.0	15.0	14.9	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.2	0.6	0.1	1.7	0.0	1.0	0.0	0.1	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	0.8	1.1	0.2	5.0	0.0	4.6	0.0	0.5	0.0	0.0	0.0
Unsig. Movement Delay, s/veh	0.0	0.0		0.2	0.0	0.0	7.0	0.0	0.0	0.2	0.0	0.0
LnGrp Delay(d),s/veh	19.8	10.4	11.0	20.0	14.0	0.0	18.9	0.0	15.1	14.9	0.0	0.0
LnGrp LOS	В	В	В	В	В	Α.	В	Α	В	В	Α	Α.
Approach Vol, veh/h		247			732			283			16	
Approach Delay, s/veh		10.7			14.1			18.5			14.9	
Approach LOS		В			В			10.3			14.5 B	
Timer - Assigned Phs	A DIES	2	3	4		6	7	8				DATE:
Phs Duration (G+Y+Rc), s		16.0	10.0	23.0		16.0	10.0	23.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		22.0	5.0	18.0		22.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		10.2	2.2	3.9		2.4	2.0	9.9				
Green Ext Time (p_c), s		0.7	0.0	0.9		0.0	0.0	3.0				
Intersection Summary	EV.		138	Nerva			No. of Lot	1225	The same	1985518		B140
HCM 6th Ctrl Delay			14.4		L all S	Te			The last			
HCM 6th LOS			В									

	۶	→	*	•	+	•	1	†	*	1	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	7	↑ ↑		ሻ	\$			4	
Traffic Volume (veh/h)	4	740	295	45	359	2	178	2	30	1 1	1	3
Future Volume (veh/h)	4	740	295	45	359	2	178	2	30	1	1	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	4	822	245	50	399	2	198	2	33	1	1	3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	182	1449	646	182	1478	7	408	17	278	114	96	182
Arrive On Green	0.10	0.41	0.41	0.10	0.41	0.41	0.18	0.18	0.18	0.18	0.18	0.18
Sat Flow, veh/h	1781	3554	1585	1781	3626	18	1412	91	1508	139	518	986
Grp Volume(v), veh/h	4	822	245	50	195	206	198	0	35	5	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1867	1412	0	1599	1643	0	0
Q Serve(g_s), s	0.1	8.7	5.3	1.3	3.6	3.6	6.4	0.0	0.9	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	8.7	5.3	1.3	3.6	3.6	6.5	0.0	0.9	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		0.94	0.20		0.60
Lane Grp Cap(c), veh/h	182	1449	646	182	724	761	408	0	295	391	0	0
V/C Ratio(X)	0.02	0.57	0.38	0.28	0.27	0.27	0.48	0.00	0.12	0.01	0.00	0.00
Avail Cap(c_a), veh/h	182	1449	646	218	724	761	723	0	652	745	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.8	11.2	10.2	20.4	9.7	9.7	18.9	0.0	16.7	16.4	0.0	0.0
Incr Delay (d2), s/veh	0.0	1.6	1.7	0.8	0.9	0.9	0.9	0.0	0.2	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	5.4	3.1	0.9	2.3	2.4	3.7	0.0	0.6	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	19.9	12.8	11.9	21.2	10.6	10.5	19.8	0.0	16.8	16.4	0.0	0.0
LnGrp LOS	В	В	В	С	В	В	В	Α	В	В	Α	Α
Approach Vol, veh/h		1071			451			233		- 1	5	
Approach Delay, s/veh		12.6			11.7			19.4			16.4	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8			AL STORY	
Phs Duration (G+Y+Rc), s		14,1	10.0	25.0		14.1	10.0	25.0		V 1	7	
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		20.0	6.0	19.0		20.0	5.0	20.0				
Max Q Clear Time (g_c+l1), s		8.5	3.3	10.7		2.1	2.1	5.6				
Green Ext Time (p_c), s		0.6	0.0	4.0		0.0	0.0	1.9				
Intersection Summary	VIE C		de la constante	SHILL			SE VIEW	- ard ar	18575		THE OWNER OF	MARK.
HCM 6th Ctrl Delay	118.		13.3									
HCM 6th LOS			В									

	•	-	•	•	←	*	1	†	~	-	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† †	7	ሻ	↑ ↑		ሻ	1→			4	
Traffic Volume (veh/h)	3	64	128	13	278	1	120	0	24	2	0	13
Future Volume (veh/h)	3	64	128	13	278	1	120	0	24	2	0	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	71	114	14	309	1	133	0	27	2	0	14
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	196	1487	663	196	1521	5	359	0	223	100	17	196
Arrive On Green	0.11	0.42	0.42	0.11	0.42	0.42	0.14	0.00	0.14	0.14	0.00	0.14
Sat Flow, veh/h	1781	3554	1585	1781	3633	12	1400	0	1585	77	122	1393
Grp Volume(v), veh/h	3	71	114	14	151	159	133	0	27	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1400	0	1585	1593	0	0
Q Serve(g_s), s	0.1	0.5	2.0	0.3	2.5	2.5	3.6	0.0	0.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	0.5	2.0	0.3	2.5	2.5	4.0	0.0	0.7	0.4	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.12		0.87
Lane Grp Cap(c), veh/h	196	1487	663	196	744	782	359	0	223	314	0	0
V/C Ratio(X)	0.02	0.05	0.17	0.07	0.20	0.20	0.37	0.00	0.12	0.05	0.00	0.00
Avail Cap(c_a), veh/h	196	1487	663	196	744	782	809	0	733	814	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	18.0	7.8	8.3	18.1	8.4	8.4	18.4	0.0	17.0	16.9	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.6	0.2	0.6	0.6	0.6	0.0	0.2	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	0.3	1.1	0.2	1.5	1.5	2.3	0.0	0.4	0.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	18.0	7.9	8.8	18.3	9.0	9.0	19.1	0.0	17.3	17.0	0.0	0.0
LnGrp LOS	В	Α	Α	В	Α	Α	В	Α	В	В	Α	Α
Approach Vol, veh/h		188			324			160			16	
Approach Delay, s/veh		8.6			9.4			18.8			17.0	
Approach LOS		Α			Α			В			В	
Timer - Assigned Phs	Bar 2 1	2	3	4	unit.	6	7	8	Zalini, L'	0.00 D 1 K	Religion P	Buyer
Phs Duration (G+Y+Rc), s		11.4	10.0	24.0		11.4	10.0	24.0			1	
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		21.0	5.0	19.0		21.0	5.0	19.0				
Max Q Clear Time (g_c+l1), s		6.0	2.3	4.0		2.4	2.1	4.5				
Green Ext Time (p_c), s		0.4	0.0	0.6		0.0	0.0	1.4				
Intersection Summary		A ASSESSED	1 Sel 14		alean.	EN LE			Pay H			
HCM 6th Ctrl Delay			11.5			THE						
HCM 6th LOS			В									

	۶	→	*	•	+	*	1	†	<i>></i>	1	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	十 十	7	ሻ	↑ ↑		ሻ	1→			4	
Traffic Volume (veh/h)	1	433	283	32	552	2	254	3	49	3	1	2
Future Volume (veh/h)	1	433	283	32	552	2	254	3	49	3	1	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	1	481	247	36	613	2	282	3	54	3	1	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	177	1271	567	177	1300	4	490	21	371	261	97	125
Arrive On Green	0.10	0.36	0.36	0.10	0.36	0.36	0.24	0.24	0.24	0.24	0.24	0.24
Sat Flow, veh/h	1781	3554	1585	1781	3633	12	1414	84	1514	626	397	512
Grp Volume(v), veh/h	1	481	247	36	300	315	282	0	57	6	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1414	0	1598	1535	0	0
Q Serve(g_s), s	0.0	5.1	6.0	0.9	6.6	6.6	9.3	0.0	1.4	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	5.1	6.0	0.9	6.6	6.6	9.4	0.0	1.4	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00	0,0	0.01	1.00	0.0	0.95	0.50	0.0	0.33
Lane Grp Cap(c), veh/h	177	1271	567	177	636	668	490	0	391	483	0	0
V/C Ratio(X)	0.01	0.38	0.44	0.20	0.47	0.47	0.58	0.00	0.15	0.01	0.00	0.00
Avail Cap(c_a), veh/h	177	1271	567	177	636	668	762	0	699	770	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	20.4	12.0	12.3	20.8	12.5	12.5	17.9	0.0	14.9	14.4	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.9	2.4	0.6	2.5	2.4	1.1	0.0	0.2	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	3.2	3.8	0.7	4.6	4.8	5.3	0.0	0.9	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.4	12.9	14.7	21.4	15.0	14.9	19.0	0.0	15.0	14.4	0.0	0.0
LnGrp LOS	С	В	В	С	В	В	В	Α	В	В	Α	Α
Approach Vol, veh/h		729			651			339			6	
Approach Delay, s/veh		13.5			15.3			18.3			14.4	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8			NA E IN	CT-sub-
Phs Duration (G+Y+Rc), s		17.3	10.0	23.0	-	17.3	10.0	23.0		-	A. H. L. L.	-
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		22.0	5.0	18.0		22.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		11.4	2.9	8.0		2.1	2.0	8.6				
Green Ext Time (p_c), s		0.9	0.0	2.9		0.0	0.0	2.5				
Intersection Summary			Cart Stole		A Salar Salar	I SHOW I			U-Days	Shirt Sh		35.0
HCM 6th Ctrl Delay			15.1			THE PERSON NAMED IN	THE R. P. LEWIS CO., LANSING	11 11	THE REAL PROPERTY.		Carriel Con	
HCM 6th LOS			В									

tersection	ATTA N	1	SVI	To the	ALC: Y	EWA!	4			1		- Rose			Patt
Delay, s/veh	3.4														
ovement	WBL	WBR	NBT	NBR	SBL	SBT		A. Carlo	THE REAL PROPERTY.					(Asia)	
ne Configurations	A		₽	11-1-1		4 Î									
affic Vol, veh/h	0	4	1	0	2	7									
ture Vol, veh/h	0	4	1	0	2	7									
onflicting Peds, #/hr	0	0	0	0	0	0									
gn Control	Stop	Stop	Free	Free	Free	Free									
Channelized	-	None		None		None									
orage Length	0					94									
h in Median Storage,	# 0		0			0									
ade, %	0	-	0	-	-	0									
ak Hour Factor	90	90	90	90	90	90									
avy Vehicles, %	2	2	2	2	2	2									
mt Flow	0	4	1	0	2	8									
ajor/Minor N	Minor1		Major1		Major2	et man	2 17					150/ EV	e Ni	Marke	- 3.50
inflicting Flow All	13	1	0	0	1	0				- 100					and the same of
Stage 1	1		-	-		-									
Stage 2	12	_			- 2										
tical Hdwy	6.42	6.22		- 2	4.12										
itical Hdwy Stg 1	5.42	-	2		-	-									
tical Hdwy Stg 2	5.42		- 3												
	3.518	3.318			2.218										
	1006	1084	V 100		1622										
	1022	-	-	×		2									
	1011	0-12	1 2	-	ш	2									
atoon blocked, %			2	말		27									
v Cap-1 Maneuver	1005	1084	1 2	_	1622										
	1005	-	¥			-									
	1021		-												
Stage 2	1011	-	. ₹			-									
proach	WB		NB		SB		No.		ENERGY.		VEL STATE		162	1000	La alu
			0												
M LOS	Α) ka										
nor Lane/Major Mymt	1986	NBT	NBRV	VBLn1	SBI	SRT			V2-8-54			- 1 O L	- PI 2	100	P. Carlo
		2													
M Control Delay, s	8.3 A	_	0 NBRV	VBLn1 1084 0.004 8.3 A 0	1.6 SBL 1622	SBT - 0 A									

Intersection					2185					(BE	S HOUSE			ologi Ten
Int Delay, s/veh	4													
Movement	WBL	WBR	NBT	NBR	SBL	SBT	SES IF	13/19/04	(Herica)			WAS I		
Lane Configurations	¥		1>			4								
Traffic Vol, veh/h	0	23	22	0	30	30								
Future Vol, veh/h	0	23	22	0	30	30								
Conflicting Peds, #/hr	0	0	0	0	0	0								
Sign Control	Stop	Stop	Free	Free	Free	Free								
RT Channelized	100	None	-	None		None								
Storage Length	0	-		-	-	-								
Veh in Median Storage	e, # 0		0		fin.	0								
Grade, %	0	-	0	-	-	0								
Peak Hour Factor	90	90	90	90	90	90								
Heavy Vehicles, %	2	2	2	2	2	2								
Mvmt Flow	0	26	24	0	33	33								
Major/Minor	Minor1		Major1	Bes 01.	Major2		HEY BOST W							
Conflicting Flow All	123	24	0	0	24	0								
Stage 1	24			_		-								
Stage 2	99	-		2	2	2								
Critical Hdwy	6.42	6.22	-		4.12	-								
Critical Hdwy Stg 1	5.42	-	-	2										
Critical Hdwy Stg 2	5.42	- i -		•										
Follow-up Hdwy	3.518	3.318	-	ā	2.218	#								
Pot Cap-1 Maneuver	872	1052			1591	*								
Stage 1	999	-	-	*	~									
Stage 2	925			-		*								
Platoon blocked, %			-	*		2								
Mov Cap-1 Maneuver	854	1052	-	P	1591	-								
Mov Cap-2 Maneuver	854	2	발	¥	ě									
Stage 1	978		11 3			15								
Stage 2	925	-		5.5	Ħ	*								
Approach	WB		NB		SB		100	No of the			75 J			AND REAL PROPERTY.
HCM Control Delay, s	8.5		0		3.7									
HCM LOS	Α													
Minor Lane/Major Mvm	it	NBT	NBRV	VBLn1	SBL	SBT			8 4 7 6	Maria I		HA	30 85 1	
Capacity (veh/h)				1052	1591	75							00	
HCM Lane V/C Ratio		2		0.024		-								
HCM Control Delay (s)			2	8.5	7.3	0								
HCM Lane LOS		ě		Α	Α	A								
HCM 95th %tile Q(veh)				0.1	0.1									

															_
Intersection			, WEY	A STATE		WARRIED	a Day N	010	in the same		A SIE	E. S.	140		Rin.
Int Delay, s/veh	3.7														
Movement	WBL	WBR	NBT	NBR	SBL	SBT	de Prais	E.V.	1516		THE STATE OF THE S	TIES.			
Lane Configurations	N/F		ĵ.			4									
Traffic Vol, veh/h	0	9	8	0	49	50									
Future Vol., veh/h	0	9	8	0	49	50									
Conflicting Peds, #/hr	0	0	0	0	0	0									
Sign Control	Stop	Stop	Free	Free	Free	Free									
RT Channelized	V =	None	-	None	111	None									
Storage Length	0	-		-	-										
Veh in Median Storage	e,# 0	s 11 -	0			0									
Grade, %	0	-	0	-		0									
Peak Hour Factor	90	90	90	90	90	90									
Heavy Vehicles, %	2	2	2	2	2	2									
Mvmt Flow	0	10	9	0	54	56									
					•	•									
Major/Minor	Minor1		Anior1		Majora			0.00			-	Total III			
			Major1		Major2							1			E30
Conflicting Flow All	173	9	0	0	9	0									
Stage 1	9	-	-	•	=	*									
Stage 2	164	-	*	•	- 4.40	70									
Critical Hdwy	6.42	6.22	Ť	7	4.12	T.									
Critical Hdwy Stg 1	5.42	-				Ħ.									
Critical Hdwy Stg 2	5.42	-	=		-										
Follow-up Hdwy	3.518	3.318	Ħ	×	2.218	*									
Pot Cap-1 Maneuver	817	1073	- +	•	1611										
Stage 1	1014	*	*	*	-	₩.									
Stage 2	865	*	-	•											
Platoon blocked, %	700	4070		-	1011	*									
Mov Cap-1 Maneuver	788	1073			1611	15									
Mov Cap-2 Maneuver	788		Ŧ	=		1:53									
Stage 1	979	Fi.	7.	=		100									
Stage 2	865	*	*	#3	-	9%									
Approach	WB	Her last	NB	71	SB	HE V						(D E)	Servi		
HCM Control Delay, s	8.4		0		3.6										
HCM LOS	Α		13		2.0										
Minor Lane/Major Mvm	ıt .	NBT	NBRV	/BI n1	SBL	SBT	211 000	9119		C. VESTI	THE REAL PROPERTY.	PARENT	erastie:		
Capacity (veh/h)		-		1073	1611	-				1000				100	700
HCM Lane V/C Ratio		2		0.009		- 9									
HCM Control Delay (s)				8.4	7.3	0									
HCM Lane LOS				Α	7.3 A	A									
HCM 95th %tile Q(veh)		72	-Type	0	0.1	A -									
TOTAL COULT TOUTE CALLACTE		111111111111111111111111111111111111111	•	U	0.1										

Intersection	David.			E SCHOOL SECTION	and the same			100 - 100 - 100 B					1000000
Int Delay, s/veh	4.1								1000	an angle f			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			No. 17 - 27				III STATE
Lane Configurations	W	11511	7>	HOIL	ODL	4							
Traffic Vol, veh/h	0	57	56	0	45	45							
Future Vol, veh/h	0	57	56	0	45	45							
Conflicting Peds, #/hr	0	0	0	0	0	0							
Sign Control	Stop	Stop	Free	Free	Free	Free							
RT Channelized	-	None	-	None	-	None							
Storage Length	0	-	-	-		-							
Veh in Median Storage		-	0		_	0							
Grade, %	0	-	0	_	_	0							
Peak Hour Factor	90	90	90	90	90	90							
Heavy Vehicles, %	2	2	2	2	2	2							
Mymt Flow	0	63	62	0	50	50							
				_									
Major/Minor	Minor1	A CONTRACTOR OF THE PARTY OF TH	Major1	The Property	Major2			REDUCES.	N. 1	RATIONAL	-07	N. 1 Kell	
Conflicting Flow All	212	62	0	0	62	0	THE WAY			ETQ.HI			
Stage 1	62	-	-	U	02	-							
Stage 2	150												
Critical Hdwy	6.42	6.22			4.12								
Critical Hdwy Stg 1	5.42	0.22	- 2	2	7.12	- 2							
Critical Hdwy Stg 2	5.42					- R							
Follow-up Hdwy		3.318	-	-	2.218	**							
Pot Cap-1 Maneuver	776	1003		-	1541								
Stage 1	961	-											
Stage 2	878		-	-									
Platoon blocked, %			- 4			12							
Mov Cap-1 Maneuver	750	1003	-		1541	- 3							
Mov Cap-2 Maneuver	750	-	걸	¥	¥								
Stage 1	929	-	-		- 7								
Stage 2	878	-		-	51								
Approach	WB		NB	1	SB		al Cauca						A.C.
HCM Control Delay, s	8.8		0		3.7				777				
HCM LOS	Α		-										
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT		1 2 8 9 3		-	ST. 182 F	- IGHT	TEN LA V
Capacity (veh/h)	K 3 1	-		1003	1541							- 112	
HCM Lane V/C Ratio		2		0.063									
HCM Control Delay (s)		110 2		8.8	7.4	0							
HCM Lane LOS		ě		Α	Α	A							
HCM 95th %tile Q(veh)			-	0.2	0.1								

A SECTION AND ASSESSMENT OF THE SECTION ASSE

Intersection				S. D. Ye	māny.	4516			(Mashail	TO BALL	FALLA	0,75	S12 \ 12
Int Delay, s/veh	7.6									1,000			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			7.5500	STEED ST		TV ag	
Lane Configurations	N/F		1→			4							
Traffic Vol, veh/h	0	188	22	0	311	30							
Future Vol, veh/h	0	188	22	0	311	30							
Conflicting Peds, #/hr	0	0	0	0	0	0							
Sign Control	Stop	Stop	Free	Free	Free	Free							
RT Channelized		None		None		None							
Storage Length	0	-	-		-	-							
Veh in Median Storage	e, # 0	-	0		-	0							
Grade, %	0	-	0	-	-	0							
Peak Hour Factor	90	90	90	90	90	90							
Heavy Vehicles, %	2	2	2	2	2	2							
Mvmt Flow	0	209	24	0	346	33							
Major/Minor	Minor1	N	Major1	TANK	Major2						187457	P. Delt	2,700
Conflicting Flow All	749	24	0	0	24	0							
Stage 1	24			-		= 2							
Stage 2	725	-	2	2		2							
Critical Hdwy	6.42	6.22	-		4.12								
Critical Hdwy Stg 1	5.42	-	ě		-								
Critical Hdwy Stg 2	5.42	-	-			751							
Follow-up Hdwy	3.518	3.318		-	2.218	#1							
Pot Cap-1 Maneuver	379	1052	-		1591								
Stage 1	999	-	*		-								
Stage 2	479	-	*										
Platoon blocked, %			2	¥		20							
Mov Cap-1 Maneuver	295	1052	-	-	1591								
Mov Cap-2 Maneuver	295	9	-	2	÷	-							
Stage 1	777	- 4	- 1										
Stage 2	479			71	*	7 m							
Approach	WB		NB	S. (210)	SB		(1-10)			No.			
HCM Control Delay, s	9.3		0		7.2								
HCM LOS	Α												
Minor Lane/Major Mym	nt	NBT	NBRV	VBLn1	SBL	SBT					NESS		S TO
Capacity (veh/h)				1052	1591								
HCM Lane V/C Ratio		2	2	0.199									
HCM Control Delay (s)		¥	₩.	9.3	7.9	0							
HCM Lane LOS			-	A	A	A							
HCM 95th %tile Q(veh)				0.7	0.8								
= = -1(- = 1)					3.0								

Intersection				AND W	71.00					2763	Y 15,3	VSZIS			
Int Delay, s/veh	6.6														
Movement	WBL	WBR	NBT	NBR	SBL	SBT					in the			Walks.	444
Lane Configurations	N/F		1>			4									
Traffic Vol, veh/h	0	137	8	0	91	50									
Future Vol, veh/h	0	137	8	0	91	50									
Conflicting Peds, #/hr	0	0	0	0	0	0									
Sign Control	Stop	Stop	Free	Free	Free	Free									
RT Channelized	-	None		None		None									
Storage Length	0	-	-	-	-	-									
Veh in Median Storage	e, # 0		0	- 1	ar :	0									
Grade, %	0	-	0	-	-	0									
Peak Hour Factor	90	90	90	90	90	90									
Heavy Vehicles, %	2	2	2	2	2	2									
Mvmt Flow	0	152	9	0	101	56									
Major/Minor	Minor1	٨	/lajor1	NJ-PE	Major2				No. F		1000	15.2			
Conflicting Flow All	267	9	0	0	9	0									
Stage 1	9	ī.	-												
Stage 2	258	-	-		2	2									
Critical Hdwy	6.42	6.22	4	2	4.12										
Critical Hdwy Stg 1	5.42	-													
Critical Hdwy Stg 2	5.42	-		-	-	-									
Follow-up Hdwy	3.518	3.318	-	-	2.218	-									
Pot Cap-1 Maneuver	722	1073			1611										
Stage 1	1014	*		×	40	-									
Stage 2	785														
Platoon blocked, %			*	=		-									
Mov Cap-1 Maneuver	675	1073	-		1611	-									
Mov Cap-2 Maneuver	675	2	2	2											
Stage 1	948	2	Ť		ž.	7.5									
Stage 2	785		- 7	-		8.00									
Approach	WB	SE SAL	NB		SB	YEAR.	A 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1			ian Je					A SUNTA
HCM Control Delay, s	8.9		0		4.8										
HCM LOS	Α														
Minor Lane/Major Mvm	nt	NBT	NBRW	/BLn1	SBL	SBT		Party Style	12.33			N. SEEDER	9.88	31.5	
Capacity (veh/h)				1073											
HCM Lane V/C Ratio		2		0.142		-									
HCM Control Delay (s)				8.9	7.4	0									
HCM Lane LOS				Α	Α	Ā									
HCM 95th %tile Q(veh)		7.50	-	0.5	0.2										
,															

Lane Configurations # fs Traffic Vol, veh/h 0 250 56 0 27 Future Vol, veh/h 0 250 56 0 27 Conflicting Peds, #/hr 0 0 0 0	SBL SBT 271 45 271 45 0 0 Free Free - None
Movement WBL WBR NBT NBR SB Lane Configurations ***	4 271 45 271 45 0 0 Free Free
Lane Configurations	4 271 45 271 45 0 0 Free Free
Lane Configurations ★ ♣ Traffic Vol, veh/h 0 250 56 0 27 Future Vol, veh/h 0 250 56 0 27 Conflicting Peds, #/hr 0 0 0 0 Sign Control Stop Stop Free Free Free RT Channelized - None - None Storage Length 0 - - - Veh in Median Storage, # 0 - 0 -	4 271 45 271 45 0 0 Free Free
Traffic Vol, veh/h 0 250 56 0 27 Future Vol, veh/h 0 250 56 0 27 Conflicting Peds, #/hr 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free RT Channelized - None - None - Vone -	271 45 271 45 0 0 Free Free
Future Vol, veh/h 0 250 56 0 27 Conflicting Peds, #/hr 0 0 0 0 0 Sign Control Stop Stop Free Free Free RT Channelized - None - None Storage Length 0 - - - Veh in Median Storage, # 0 - 0 -	271 45 0 0 Free Free
Conflicting Peds, #/hr 0 0 0 0 0 Sign Control Stop Stop Free Free Free RT Channelized - None - None Storage Length 0 Veh in Median Storage, # 0 - 0 -	0 0 Free Free
Sign Control Stop Stop Free Free Free RT Channelized - None - None Storage Length 0 Veh in Median Storage, # 0 - 0 -	Free Free
RT Channelized - None - None Storage Length 0 Veh in Median Storage, # 0 - 0 -	
Veh in Median Storage, # 0 - 0 -	
Grade % 0 - 0	- 0
Grade, 70 - 0 -	- 0
Peak Hour Factor 90 90 90 90 9	90 90
Heavy Vehicles, % 2 2 2 2	2 2
Mvmt Flow 0 278 62 0 30	301 50
Major/Minor Minor1 Major1 Major	ior2
	62 0
Stage 1 62 - + -	02 0
Stage 2 652	
	4.12
Critical Hdwy Stg 1 5.42	+. IZ
Critical Hdwy Stg 2 5.42	
Follow-up Hdwy 3.518 3.318 2.21	
Pot Cap-1 Maneuver 398 1003 154	
Stage 1 961	
Stage 2 518	
Platoon blocked, %	
Mov Cap-1 Maneuver 318 1003 154	541
Mov Cap-2 Maneuver 318	# 4
Stage 1 768	
Stage 2 518	
Approach IMP ND C	CD.
	SB
	6.8
HCM LOS B	
Minor Lane/Major Mvmt NBT NBRWBLn1 SB	SBL SBT
Capacity (veh/h) 1003 154	541 -
HCM Lane V/C Ratio 0.277 0.19	195 -
HCM Control Delay (s) 10 7.	7.9 0
HCM Lane LOS B	A A
HCM 95th %tile Q(veh) 1.1 0.	

Intersection		/CEF4		al ligati				ENEW	TENTO.	1500	S.IE.	78	or U.S.		15.45	934
Int Delay, s/veh	8.8															
Movement	WBL	WBR	NBT	NBR	SBL	SBT		F Brigg		Fish	MAR	1100	Spielli,		ROOM	398
Lane Configurations	W		1→			4										
Traffic Vol, veh/h	0	250	4	0	83	2										
Future Vol, veh/h	0	250	4	0	83	2										
Conflicting Peds, #/hr	0	0	0	0	0	0										
Sign Control	Stop	Stop	Free	Free	Free	Free										
RT Channelized	HIN'	None		None		None										
Storage Length	0	-	-			8										
Veh in Median Storage	e,# 0		0		-	0										
Grade, %	0	-	0	-		0										
Peak Hour Factor	90	90	90	90	90	90										
Heavy Vehicles, %	2	2	2	2	2	2										
Mvmt Flow	0	278	4	0	92	2										
Major/Minor	Minor1	8 1	Major1		Major2	- inter								- 10.50		5334
Conflicting Flow All	190	4	0	0	4	0			10000					2		
Stage 1	4	4	U	U	4											
Stage 2	186		-	- 5												
Critical Hdwy	6.42	6.22			4.12											
Critical Hdwy Stg 1	5.42	0.22			4.12											
Critical Hdwy Stg 2	5.42			-												
Follow-up Hdwy	3.518	3.318		_	2.218											
Pot Cap-1 Maneuver	799	1080			1618											
Stage 1	1019	-			1010	-										
Stage 2	846		77													
Platoon blocked, %	0.10															
Mov Cap-1 Maneuver	753	1080	4		1618											
Mov Cap-2 Maneuver	753	-	2		-	-										
Stage 1	961															
Stage 2	846	-	-	-												
THE RESERVE																
Approach	WB		NB		SB							3 300	101531	GUPS.		
HCM Control Delay, s	9.5		0		7.2						THE REAL PROPERTY.					
HCM LOS	A				1.2											-
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT	EN ACCE	Page 1		HER LIE		(1)15,25	NE LE			
Capacity (veh/h)		-		1080	1618	-										
HCM Lane V/C Ratio		14		0.257		- 3										
HCM Control Delay (s)		176	- 2	9.5	7.4	0										
HCM Lane LOS			-	Α.	Α.	A										
HCM 95th %tile Q(veh)			7.80	1	0.2	_										
					3.2											

Intersection		30223		IN SUE	u Sva			Na SE		2.720		EAGA
Int Delay, s/veh	8.2											
Movement	WBL	WBR	NBT	NBR	SBL	SBT				Farris .	3765	The state of
Lane Configurations	*		4			4						
Traffic Vol, veh/h	0	281	21	0	315	28						
Future Vol, veh/h	0	281	21	0	315	28						
Conflicting Peds, #/hr	0	0	0	0	0	0						
Sign Control	Stop	Stop	Free	Free	Free	Free						
RT Channelized		None		None		None						
Storage Length	0	-		-		-						
Veh in Median Storage	e, # 0	-	0			0						
Grade, %	0	-	0	-	-	0						
Peak Hour Factor	90	90	90	90	90	90						
Heavy Vehicles, %	2	2	2	2	2	2						
Mvmt Flow	0	312	23	0	350	31						
Major/Minor	Minor1	N	Major1		Major2							The same
Conflicting Flow All	754	23	0	0	23	0						
Stage 1	23				-	-						
Stage 2	731	-	-	-		- 2						
Critical Hdwy	6.42	6.22			4.12	-						
Critical Hdwy Stg 1	5.42	-		-								
Critical Hdwy Stg 2	5.42				-							
Follow-up Hdwy	3.518	3.318	-	-	2.218							
Pot Cap-1 Maneuver	377	1054			1592							
Stage 1	1000	-	-	-	-							
Stage 2	476			-	-	2						
Platoon blocked, %			-	-		-						
Mov Cap-1 Maneuver	293	1054		-	1592							
Mov Cap-2 Maneuver	293	-	-	-	-							
Stage 1	776		-			175						
Stage 2	476		-	-	-							
Approach	WB	Miller V	NB		SB	12		A	(SERVICE			NESSEN .
HCM Control Delay, s	9.8	100	0		7.3		10-11					
HCM LOS	Α											
Minor Lane/Major Mvm	it	NBT	NBRV	VBLn1	SBL	SBT		S S S S S S S S S S S S S S S S S S S		- 15	E-117 9	65. 117.
Capacity (veh/h)				1054	1592	-	-					
HCM Lane V/C Ratio				0.296	0.22							
HCM Control Delay (s)				9.8	7.9	0						
HCM Lane LOS			-	A	Α	A						
HCM 95th %tile Q(veh)		7	-	1.2	0.8	= .						
.,,					٠.٠							

Intersection	CALE SE	S To	E TOTAL		23,44		47.5	100	Carolina in A		Xaxa	Herat.		
Int Delay, s/veh	6.4												THE REAL PROPERTY.	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	all vunez				12 5		NE SER	
Lane Configurations	*		1→			सी								
Traffic Vol, veh/h	0	128	9	0	42	49								
Future Vol, veh/h	0	128	9	0	42	49								
Conflicting Peds, #/hr	0	0	0	0	0	0								
Sign Control	Stop	Stop	Free	Free	Free	Free								
RT Channelized		None		None		None								
Storage Length	0	-			_	14								
Veh in Median Storage	e, # 0	30.5	0	-		0								
Grade, %	0	-	0	-	-	0								
Peak Hour Factor	90	90	90	90	90	90								
Heavy Vehicles, %	2	2	2	2	2	2								
Mvmt Flow	0	142	10	0	47	54								
Major/Minor	Minor1	restine N	Major1	D. Serie	Major2	E ITAL						Cont IV		100 AV 5.1
Conflicting Flow All	158	10	0	0	10	0	Mary May 1							70 22 27
Stage 1	10	10	-	-	10	-								
Stage 2	148	_	-											
Critical Hdwy	6.42	6.22			4.12									
Critical Hdwy Stg 1	5.42	-	4		- 14									
Critical Hdwy Stg 2	5.42				77									
Follow-up Hdwy		3.318		-	2.218	-								
Pot Cap-1 Maneuver	833	1071		Т.	1610									
Stage 1	1013	-		_	.0.0	_								
Stage 2	880		+			-								
Platoon blocked, %			4			2								
Mov Cap-1 Maneuver	808	1071		-	1610	- 2								
Mov Cap-2 Maneuver	808	-	-	-		¥								
Stage 1	983	72	-											
Stage 2	880	8	*											
Approach	WB	and the	NB		SB	2011			Man Sittle In			Total S		. 1900000
HCM Control Delay, s	8.9	The second second	0		3.4	INTER.				-			100	
HCM LOS	Α.5		U		J. 4									
Minor Lane/Major Mvm	nt.	NBT	NBRV	VRI n1	SBL	SBT	onsur-		LSO YOUR			No.	OC PLAN	
Capacity (veh/h)	IX.	1401		1071	1610			- 10.0			and the same	a delete	24E 4	
HCM Lane V/C Ratio		_		0.133		- 1								
HCM Control Delay (s)			- 2	8.9	7.3	0								
HCM Lane LOS				6.9 A	7.3 A	A								
HCM 95th %tile Q(veh)				0.5	0.1	Α-								
TOWN COURT TOURS CALACITY		- 5	-	0.0	0.1									

Intersection					3 5 6 1	SUSSIAN			MAJA E	7					TIVIT
Int Delay, s/veh	6.9														
Movement	WBL	WBR	NBT	NBR	SBL	SBT		N HA	E ALE	TO THE					E
Lane Configurations	N/A		1>			4									
Traffic Vol, veh/h	0	193	57	0	226	45									
Future Vol, veh/h	0	193	57	0	226	45									
Conflicting Peds, #/hr	0	0	0	0	0	0									
Sign Control	Stop	Stop	Free	Free	Free	Free									
RT Channelized		None	4	None		None									
Storage Length	0	-	-	_	-	-									
Veh in Median Storage	e,# 0	- 1	0			0									
Grade, %	0		0	-	-	0									
Peak Hour Factor	90	90	90	90	90	90									
Heavy Vehicles, %	2	2	2	2	2	2									
Mvmt Flow	0	214	63	0	251	50									
Major/Minor	Minor1	1	Major1	S CHIEF	Major2			100	I STATE OF S		35 50	Ca635		2550	5.39
Conflicting Flow All	615	63	0	0	63	0	RO-DE-	Para		01	0.1.50		20,4000		E
Stage 1	63	-	-	-	03	-									
Stage 2	552		•	-		-									
Critical Hdwy	6.42	6.22		-	4.12	_									
Critical Hdwy Stg 1	5.42	0.22		H 2	4.12										
Critical Hdwy Stg 2	5.42														
Follow-up Hdwy	3.518		5		2.218	-									
Pot Cap-1 Maneuver	455	1002			1540	BIII .									
Stage 1	960	-			1010										
Stage 2	577		-												
Platoon blocked, %			_												
Mov Cap-1 Maneuver	379	1002	-	2	1540										
Mov Cap-2 Maneuver	379	2	-	2	1										
Stage 1	799	2			-										
Stage 2	577			-		-									
Approach	WB		NB		SB		1074		1 5 10 1				(Albert	e contra	-81
HCM Control Delay, s	9.6		0		6.5			-				-			
HCM LOS	Α		7.												
Minor Lane/Major Mvm	nt A	NBT	NBRV	VBI n1	SBL	SBT		TONI		No.	DOM:			-1	200
Capacity (veh/h)	TI-E	-		1002		-				and the same					
HCM Lane V/C Ratio		2		0.214		_									
HCM Control Delay (s)				9.6	7.8	0									
HCM Lane LOS		2		Α	Α.	A									
HCM 95th %tile Q(veh)			0.8	0.6	-									
				3.0	3.0										

	۶	-	*	1	+	*	4	†	*	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	ተተ	7	ሻ	↑ ↑		7	1→			4	
Traffic Volume (veh/h)	2	137	13	2	651	0	3	0	2	3	0	12
Future Volume (veh/h)	2	137	13	2	651	0	3	0	2	3	0	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	2	152	14	2	723	0	3	0	2	3	0	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	198	1579	704	198	1579	0	319	0	176	111	17	144
Arrive On Green	0.11	0.44	0.44	0.11	0.44	0.00	0.11	0.00	0.11	0.11	0.00	0.11
Sat Flow, veh/h	1781	3554	1585	1781	3647	0	1401	0	1585	146	152	1292
Grp Volume(v), veh/h	2	152	14	2	723	0	3	0	2	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	0	1401	0	1585	1591	0	0
Q Serve(g_s), s	0.0	1.1	0.2	0.0	6.4	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	1.1	0.2	0.0	6.4	0.0	0.1	0.0	0.1	0.4	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00	0.0	1.00	0.19	0.0	0.81
Lane Grp Cap(c), veh/h	198	1579	704	198	1579	0	319	0	176	272	0	0.01
V/C Ratio(X)	0.01	0.10	0.02	0.01	0.46	0.00	0.01	0.00	0.01	0.06	0.00	0.00
Avail Cap(c_a), veh/h	198	1579	704	198	1579	0	786	0	704	788	0	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	17.8	7.3	7.0	17.8	8.7	0.0	17.8	0.0	17.8	18.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.1	0.0	1.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	0.6	0.1	0.0	3.5	0.0	0.0	0.0	0.0	0.3	0.0	0.0
Unsig. Movement Delay, s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh	17.8	7.4	7.1	17.8	9.7	0.0	17.8	0.0	17.8	18.0	0.0	0.0
LnGrp LOS	В	Α	Α	В	Α	A	В	A	В	В	A	A
Approach Vol, veh/h		168	1111		725		M TE	5			16	
Approach Delay, s/veh		7.5			9.7			17.8			18.0	
Approach LOS		A			A			В			В	
Timer - Assigned Phs	201543	2	3	4		6	7	8				[35.07]
Phs Duration (G+Y+Rc), s		10.0	10.0	25.0		10.0	10.0	25.0		100		
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		20.0	5.0	20.0		20.0	5.0	20.0				
Max Q Clear Time (g_c+l1), s		2.1	2.0	3.1		2.4	2.0	8.4				
Green Ext Time (p_c), s		0.0	0.0	0.8		0.0	0.0	3.7				
Intersection Summary	W. 1850 (C)	Market V	Militare		estimate a			ISUBVA	ALTERNA SE	SUPERIAR		ASSESSED.
HCM 6th Ctrl Delay	-	The state of the s	9.5	The second second		10000	1000			7		
HCM 6th LOS			9.5 A									
HOW OUT LOS			А									

	۶	→	*	•	+	*	4	†	1	1	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ħ	^		ħ	4			4	
Traffic Volume (veh/h)	4	740	450	49	359	2	214	2	24	1 1 1	1	3
Future Volume (veh/h)	4	740	450	49	359	2	214	2	24	1	1	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1,00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	4	822	389	54	399	2	238	2	27	1	1	3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	176	1402	626	176	1431	7	441	23	314	117	106	207
Arrive On Green	0.10	0.39	0.39	0.10	0.39	0.39	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	1781	3554	1585	1781	3626	18	1412	110	1491	152	504	984
Grp Volume(v), veh/h	4	822	389	54	195	206	238	0	29	5	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1867	1412	0	1602	1639	0	0
Q Serve(g_s), s	0.1	9.2	10.0	1.4	3.8	3.8	7.9	0.0	0.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	9.2	10.0	1.4	3.8	3.8	8.1	0.0	0.7	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		0.93	0.20		0.60
Lane Grp Cap(c), veh/h	176	1402	626	176	701	737	441	0	338	431	0	0
V/C Ratio(X)	0.02	0.59	0.62	0.31	0.28	0.28	0.54	0.00	0.09	0.01	0.00	0.00
Avail Cap(c_a), veh/h	176	1402	626	211	701	737	700	0	632	723	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	20.6	12.1	12.3	21.2	10.4	10.4	19.0	0.0	16.1	15.8	0.0	0.0
Incr Delay (d2), s/veh	0.1	1.8	4.6	1.0	1.0	0.9	1.0	0.0	0.1	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	5.8	6.5	1.0	2.5	2.6	4.6	0.0	0.5	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.7	13.9	16.9	22.2	11.4	11.4	20.0	0.0	16.2	15.8	0.0	0.0
LnGrp LOS	С	В	В	С	В	В	В	Α	В	В	Α	Α
Approach Vol, veh/h		1215			455			267		V	5	
Approach Delay, s/veh		14.9			12.7			19.6			15.8	
Approach LOS		В			В			В			В	
Timer - Assigned Phs	Angelia.	2	3	4	er diese	6	7	8				
Phs Duration (G+Y+Rc), s		15.7	10.0	25.0		15.7	10.0	25.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		20.0	6.0	19.0		20.0	5.0	20.0				
Max Q Clear Time (g_c+l1), s		10.1	3.4	12.0		2.1	2.1	5.8				
Green Ext Time (p_c), s		0.6	0.0	3.8		0.0	0.0	1.9				
Intersection Summary		ALL COMPANY								TOLKING S	Wante	(ESID)
HCM 6th Ctrl Delay	-411-04		15.0									
TICIVI OUT CUT Delay			10.0									

	۶	→	*	•	-	*	1	†	/	1	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	ተተ	7	ሻ	↑ ↑		7	₽			4	
Traffic Volume (veh/h)	3	64	172	14	278	1	32	0	4	2	0	13
Future Volume (veh/h)	3	64	172	14	278	1	32	0	4	2	0	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	71	-31	16	309	1	36	0	4	2	0	14
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	189	1663	742	189	1701	6	306	0	169	96	11	148
Arrive On Green	0.11	0.47	0.00	0.11	0.47	0.47	0.11	0.00	0.11	0.11	0.00	0.11
Sat Flow, veh/h	1781	3554	1585	1781	3633	12	1400	0	1585	94	104	1391
Grp Volume(v), veh/h	3	71	-31	16	151	159	36	0	4	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1400	0	1585	1589	0	0
Q Serve(g_s), s	0.1	0.5	0.0	0.4	2.3	2.3	0.6	0.0	0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	0.5	0.0	0.4	2.3	2.3	1.0	0.0	0.1	0.4	0.0	0.0
Prop In Lane	1.00	0.0	1.00	1.00	2.0	0.01	1.00	0.0	1.00	0.12	0.0	0.87
Lane Grp Cap(c), veh/h	189	1663	742	189	832	874	306	0	169	255	0	0.87
V/C Ratio(X)	0.02	0.04	-0.04	0.08	0.18	0.18	0.12	0.00	0.02	0.06	0.00	0.00
Avail Cap(c_a), veh/h	189	1663	742	189	832	874	693	0.00	607	687	0.00	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00		0.00
Uniform Delay (d), s/veh	18.8	6.8	0.00	18.9	7.3	7.3	19.2	0.0	18.8	19.0	0.00	0.00
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.2	0.5	0.5	0.2	0.0	0.1	0.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.2	0.0		0.2				0.0	0.0
	0.0	0.0	0.0		1.3	0.0		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%), veh/ln Unsig. Movement Delay, s/veh		0.3	0.0	0.3	1,3	1.4	0.6	0.0	0.1	0.3	0.0	0.0
		6.8	0.0	10.1	77	7.7	10.4	0.0	10.0	10.4	0.0	0.0
LnGrp Delay(d),s/veh	18.8			19.1	7.7	7.7	19.4	0.0	18.9	19.1	0.0	0.0
LnGrp LOS	В	A 40	Α	В	A	Α	В	A	В	В	A 10	A
Approach Vol, veh/h		43			326			40			16	
Approach Delay, s/veh		12.6			8.3			19.3			19.1	
Approach LOS		В			Α			В			В	
Timer - Assigned Phs		2	3	4	e villa	6	7	8			1787	TEIS
Phs Duration (G+Y+Rc), s		10.0	10.0	27.0		10.0	10.0	27.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		18.0	5.0	22.0		18.0	5.0	22.0				
Max Q Clear Time (g_c+l1), s		3.0	2.4	2.5		2.4	2.1	4.3				
Green Ext Time (p_c), s		0.1	0.0	0.3		0.0	0.0	1.5				
Intersection Summary	WEST THE				10 38	Hall B	H WES	CHIEF STREET	NAME OF THE OWNER, OWNE		4513	
HCM 6th Ctrl Delay			10,2							1,11	+1	
HCM 6th LOS			В									

,	۶		*	•	-	4	4	†	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ	7	7	↑ ↑		ħ	1→			4	
Traffic Volume (veh/h)	1	433	224	20	552	2	150	0	26	3	4	2
Future Volume (veh/h)	1	433	224	20	552	2	150	0	26	3	4	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	1	481	166	22	613	2	167	0	29	3	4	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	195	1404	626	195	1435	5	394	0	263	158	166	62
Arrive On Green	0.11	0.39	0.39	0.11	0.39	0.39	0.17	0.00	0.17	0.17	0.17	0.17
Sat Flow, veh/h	1781	3554	1585	1781	3633	12	1410	0	1585	315	1000	376
Grp Volume(v), veh/h	1	481	166	22	300	315	167	0	29	9	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1410	0	1585	1691	0	0
Q Serve(g_s), s	0.0	4.3	3.2	0.5	5.6	5.6	4.9	0.0	0.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	4.3	3.2	0.5	5.6	5.6	5.0	0.0	0.7	0.2	0.0	0.0
Prop In Lane	1.00	1.0	1.00	1.00	0.0	0.01	1.00	0.0	1.00	0.33	0.0	0.22
Lane Grp Cap(c), veh/h	195	1404	626	195	702	738	394	0	263	386	0	0.22
V/C Ratio(X)	0.01	0.34	0.27	0.11	0.43	0.43	0.42	0.00	0.11	0.02	0.00	0.00
Avail Cap(c_a), veh/h	195	1404	626	195	702	738	840	0	765	898	0.00	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	18.1	9.6	9.3	18.3	10.0	10.0	17.9	0.0	16.1	15.9	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.7	1.0	0.3	1.9	1.8	0.7	0.0	0.2	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	2.5	1.8	0.4	3.6	3.8	2.8	0.0	0.4	0.1	0.0	0.0
Unsig. Movement Delay, s/veh	0.0	2.0	1.0	0.1	0.0	0.0	2.0	0.0	0.1	0.1	0.0	0.0
LnGrp Delay(d),s/veh	18.1	10.3	10.4	18.5	11.9	11.8	18.7	0.0	16.3	15.9	0.0	0.0
LnGrp LOS	В	В	В	В	В	В	В	A	В	В	A	A
Approach Vol, veh/h		648			637	7 7 7 7	1	196			9	
Approach Delay, s/veh		10.3			12.1			18.3			15.9	
Approach LOS		В			В			В			В	
	name or a		0									COLECT
Timer - Assigned Phs		2	3	4		6	7	8		y USE V		TEG!
Phs Duration (G+Y+Rc), s		12,6	10.0	23.0		12.6	10.0	23.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		22.0	5.0	18.0		22.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		7.0	2.5	6.3		2.2	2.0	7.6				
Green Ext Time (p_c), s		0.5	0.0	2.9		0.0	0.0	2.6				
Intersection Summary			Service Services	Don't	Gil Giv	y/a 3 6 1	EX. The	A SHA	SALTE.	1476	元	AND THE
HCM 6th Ctrl Delay			12.2									
HCM 6th LOS			В									

	۶		*	*	-	1	4	†	*	1	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	^	7	ሻ	†		ሻ	1→			4	
Traffic Volume (veh/h)	2	137	88	10	651	0	228	0	27	3	0	12
Future Volume (veh/h)	2	137	88	10	651	0	228	0	27	3	0	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	2	152	87	11	723	0	253	0	30	3	0	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	182	1306	583	182	1306	0	464	0	355	117	37	289
Arrive On Green	0.10	0.37	0.37	0.10	0.37	0.00	0.22	0.00	0.22	0.22	0.00	0.22
Sat Flow, veh/h	1781	3554	1585	1781	3647	0	1401	0	1585	134	164	1292
Grp Volume(v), veh/h	2	152	87	11	723	0	253	0	30	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	0	1401	0	1585	1590	0	Ö
Q Serve(g_s), s	0.0	1.4	1.8	0.3	7.9	0.0	7.9	0.0	0.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	1.4	1.8	0.3	7.9	0.0	8.2	0.0	0.7	0.4	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00	0,0	1.00	0.19	0.0	0.81
Lane Grp Cap(c), veh/h	182	1306	583	182	1306	0	464	0	355	444	0	0
V/C Ratio(X)	0.01	0.12	0.15	0.06	0.55	0.00	0.55	0.00	0.08	0.04	0.00	0.00
Avail Cap(c_a), veh/h	182	1306	583	182	1306	- 0	779	0	712	791	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.8	10.2	10.4	19.9	12.3	0.0	17.9	0.0	15.0	14.9	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.2	0.5	0.1	1.7	0.0	1.0	0.0	0.1	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	0.8	1.1	0.2	5.0	0.0	4.6	0.0	0.5	0.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	19.8	10.4	10.9	20.0	14.0	0.0	18.9	0.0	15.1	14.9	0.0	0.0
LnGrp LOS	В	В	В	С	В	Α	В	Α	В	В	Α	Α
Approach Vol, veh/h		241			734	1 1 51		283		-	16	
Approach Delay, s/veh		10.7			14.1			18.5			14.9	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2	3	4	15.5	6	7	8			TYLONG I	HEEP
Phs Duration (G+Y+Rc), s		16.0	10.0	23.0		16.0	10.0	23.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		22.0	5.0	18.0		22.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		10.2	2.3	3.8		2.4	2.0	9.9				
Green Ext Time (p_c), s		0.7	0.0	0.9		0.0	0.0	3.0				
Intersection Summary	HE WEST			- Torres		TOP IS	man to the second	- IV-	20 100	NG THE	R-AUX	NO.
HCM 6th Ctrl Delay			14.4									
HCM 6th LOS			В									

	۶	-	*	•	+	*	1	†	1	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T	^	7	7	↑ ↑		ሻ	1→			4	
Traffic Volume (veh/h)	4	740	703	77	359	2	362	2	41	1	1	3
Future Volume (veh/h)	4	740	703	77	359	2	362	2	41	1	1	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	4	822	587	86	399	2	402	2	46	1	1	3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	160	1146	511	160	1169	6	581	21	488	139	145	311
Arrive On Green	0.09	0.32	0.32	0.09	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32
Sat Flow, veh/h	1781	3554	1585	1781	3626	18	1412	66	1529	194	455	973
Grp Volume(v), veh/h	4	822	587	86	195	206	402	0	48	5	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1867	1412	0	1595	1622	0	0
Q Serve(g_s), s	0.1	11.4	18.0	2.6	4.7	4.7	15.0	0.0	1.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	11.4	18.0	2.6	4.7	4.7	15.1	0.0	1.2	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		0.96	0.20		0.60
Lane Grp Cap(c), veh/h	160	1146	511	160	573	602	581	0	510	596	0	0
V/C Ratio(X)	0.03	0.72	1.15	0.54	0.34	0.34	0.69	0.00	0.09	0.01	0.00	0.00
Avail Cap(c_a), veh/h	160	1146	511	160	573	602	686	0	628	713	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	23.2	16.7	18.9	24.3	14.4	14.4	18.0	0.0	13.3	13.0	0.0	0.0
Incr Delay (d2), s/veh	0.1	3.9	87.7	3.6	1.6	1.5	2.4	0.0	0.1	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	8.1	27.2	2.1	3.4	3.5	8.4	0.0	0.7	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	23.3	20.6	106.7	27.9	16.0	15.9	20.4	0.0	13.4	13.0	0.0	0.0
LnGrp LOS	С	С	F	С	В	В	С	Α	В	В	Α	Α
Approach Vol, veh/h		1413			487			450			5	12 7 1
Approach Delay, s/veh		56.3			18.1			19.7			13.0	
Approach LOS		Е			В			В			В	
Timer - Assigned Phs		2	3	4	in An	6	7	8	N. Est			HEVE!
Phs Duration (G+Y+Rc), s		22.8	10.0	23.0		22.8	10.0	23.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		22.0	5.0	18.0		22.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		17.1	4.6	20.0		2.1	2.1	6.7				
Green Ext Time (p_c), s		0.8	0.0	0.0		0.0	0.0	1.7				
Intersection Summary			No. No. of		UNITED IN			AKYETA!	Will Street	S III e		601
HCM 6th Ctrl Delay		2 1 1	41.3	- 1							7 7	
HCM 6th LOS			D									

	۶	-	*	•	+	4	4	†	-	-		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	ሻ	↑ ↑		Ŋ	ĵ»			4	
Traffic Volume (veh/h)	3	64	210	18	278	1	147	0	17	2	0	13
Future Volume (veh/h)	3	64	210	18	278	1	147	0	17	2	0	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1,00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	71	11	20	309	1	163	0	19	2	0	14
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	164	1701	759	164	1739	6	350	0	243	84	21	214
Arrive On Green	0.09	0.48	0.48	0.09	0.48	0.48	0.15	0.00	0.15	0.15	0.00	0.15
Sat Flow, veh/h	1781	3554	1585	1781	3633	12	1400	0	1585	65	135	1397
Grp Volume(v), veh/h	3	71	11	20	151	159	163	0	19	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1400	0	1585	1597	0	0
Q Serve(g_s), s	0.1	0.6	0.2	0.6	2.6	2.6	5.5	0.0	0.6	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	0.6	0.2	0.6	2.6	2.6	5.9	0.0	0.6	0.5	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.12		0.87
Lane Grp Cap(c), veh/h	164	1701	759	164	851	894	350	0	243	319	0	0
V/C Ratio(X)	0.02	0.04	0.01	0.12	0.18	0.18	0.47	0.00	0.08	0.05	0.00	0.00
Avail Cap(c_a), veh/h	164	1701	759	164	851	894	625	0	554	626	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	22.4	7.5	7.4	22.6	8.1	8.1	21.9	0.0	19.7	19.7	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.3	0.5	0.4	1.0	0.0	0.1	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	0.3	0.1	0.4	1.6	1.7	3.5	0.0	0.4	0.3	0.0	0.0
Unsig. Movement Delay, s/veh				•								
LnGrp Delay(d),s/veh	22.5	7.6	7.5	23.0	8.5	8.5	22.9	0.0	19.9	19.7	0.0	0.0
LnGrp LOS	С	Α	Α	С	Α	Α	С	Α	В	В	Α	Α
Approach Vol, veh/h	4 11,51	85			330			182			16	
Approach Delay, s/veh		8.1			9.4			22.6			19.7	
Approach LOS		Α			Α			С			В	
Timer - Assigned Phs		2	3	4	HILLION I	6	7	8				
Phs Duration (G+Y+Rc), s	3115	13.3	10.0	31.0	-	13.3	10.0	31.0	Total Service			
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		19.0	5.0	26.0		19.0	5.0	26.0				
Max Q Clear Time (g_c+l1), s		7.9	2.6	2.6		2.5	2.1	4.6				
Green Ext Time (p_c), s		0.4	0.0	0.4		0.0	0.0	1.6				
		0.4	0.0	0.4	1000	0.0	0.0	1.0	water and the	THE PERSON NAMED IN	No.	
Intersection Summary		Marie .	40.4	WELL LA	AUSTIN 2		16 10%		SVZ, S. J.	1 8 3 100	THE PARTY	14114
HCM 6th Ctrl Delay			13.4									
HCM 6th LOS			В									

	۶	-	*	•	-	*	4	†	~	1	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T	† †	7	ሻ	↑ ↑		ሻ	1→			↔	
Traffic Volume (veh/h)	1	433	427	43	552	2	324	0	45	3	4	2
Future Volume (veh/h)	1	433	427	43	552	2	324	0	45	3	4	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	1	481	363	48	613	2	360	0	50	3	4	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	164	1176	524	164	1202	4	559	0	478	211	264	111
Arrive On Green	0.09	0.33	0.33	0.09	0.33	0.33	0.30	0.00	0.30	0.30	0.30	0.30
Sat Flow, veh/h	1781	3554	1585	1781	3633	12	1410	0	1585	409	874	366
Grp Volume(v), veh/h	1	481	363	48	300	315	360	0	50	9	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1410	0	1585	1649	0	0
Q Serve(g_s), s	0.0	5.7	10.8	1.4	7.4	7.4	12.8	0.0	1.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	5.7	10.8	1.4	7.4	7.4	13.0	0.0	1.2	0.2	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.33		0.22
Lane Grp Cap(c), veh/h	164	1176	524	164	588	618	559	0	478	586	0	0
V/C Ratio(X)	0.01	0.41	0.69	0.29	0.51	0.51	0.64	0.00	0.10	0.02	0.00	0.00
Avail Cap(c_a), veh/h	164	1176	524	164	588	618	1222	0	1224	1339	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	22.4	14.1	15.8	23.1	14.7	14.7	17.8	0.0	13.7	13.3	0.0	0.0
Incr Delay (d2), s/veh	0.0	1.1	7.3	1.0	3.1	3.0	1.3	0.0	0.1	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	3.8	7.8	1.0	5.5	5.7	7.2	0.0	0.8	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	22.5	15.1	23.1	24.0	17.8	17.6	19.0	0.0	13.8	13.3	0.0	0.0
LnGrp LOS	С	В	С	С	В	В	В	Α	В	В	Α	Α
Approach Vol, veh/h		845			663			410			9	- 11-5
Approach Delay, s/veh		18.6			18.2			18.4			13.3	
Approach LOS		В			В			В			В	
Timer - Assigned Phs	Sept 1	2	3	4		6	7	8				United
Phs Duration (G+Y+Rc), s		21.4	10.0	23.0		21.4	10.0	23.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		42.0	5.0	18.0		42.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		15.0	3.4	12.8		2.2	2.0	9.4				
Green Ext Time (p_c), s		1.4	0.0	2.1		0.0	0.0	2.3				
Intersection Summary	Edit 3	m. Plan	The Carrie	i de la	-351					(A. 0)-12	1 1 1 2	150
HCM 6th Ctrl Delay	10.14		18.4									
HCM 6th LOS			В									

Intersection	W 65/9	Pay tey	His.		Turs			To a later of	A Series			in Car	Tornie I
Int Delay, s/veh	4.2												
Movement	WBL	WBR	NBT	NBR	SBL	SBT		A SEPTEMBER	A Thirty on	10 10		NA SE	
Lane Configurations	W		↑→			4							
Traffic Vol, veh/h	0	4	1	0	7	8							
Future Vol, veh/h	0	4	1	0	7	8							
Conflicting Peds, #/hr	0	0	0	0	0	0							
Sign Control	Stop	Stop	Free	Free	Free	Free							
RT Channelized	<u> </u>	None		None		None							
Storage Length	0	-	-	2	2	2							
Veh in Median Storage	e, # 0	ц, -	0		1	0							
Grade, %	0	-	0		-	0							
Peak Hour Factor	90	90	90	90	90	90							
Heavy Vehicles, %	2	2	2	2	2	2							
Mvmt Flow	0	4	1	0	8	9							
Major/Minor	Minor1	The N	Major1		Major2		RES RU			1200	S San		
Conflicting Flow All	26	1	0	0	1	0							
Stage 1	1	E., -		4		•							
Stage 2	25	-	-		5								
Critical Hdwy	6.42	6.22	-		4.12								
Critical Hdwy Stg 1	5.42	-	-		- 8	-							
Critical Hdwy Stg 2	5.42	14.			#	100							
Follow-up Hdwy	3.518	3.318	-	2	2.218	I M							
Pot Cap-1 Maneuver	989	1084	•		1622	-							
Stage 1	1022	-	-	2	72	-							
Stage 2	998		-	-									
Platoon blocked, %			-	÷		1.7							
Mov Cap-1 Maneuver	984	1084		7.	1622								
Mov Cap-2 Maneuver	984	-	-		*	1.5							
Stage 1	1017	-	-		_ U.S	(*)							
Stage 2	998	-	-	¥	#	i i							
Approach	WB		NB	A A	SB	1813	4-3-5-66			37,153	SQ 159		
HCM Control Delay, s	8.3	Try Ex	0		3.4					_			
HCM LOS	Α												
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT		I VA DA		a suyi		Web. Y	THE STATE OF
Capacity (veh/h)	Milit	PVI :		1084	1622		TENE				43		217
HCM Lane V/C Ratio		-		0.004									
HCM Control Delay (s)	g Jir	10.		8.3	7.2	0							
HCM Lane LOS		×	-	Α	Α	Α							
HCM 95th %tile Q(veh)		-	0	0	-							

÷						
Intersection				EVIT SE		10 100
Int Delay, s/veh	4.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		₽			ની
Traffic Vol, veh/h	0	120	120	0	250	250
Future Vol, veh/h	0	120	120	0	250	250
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	1 -	None	-	None
Storage Length	0	-	-	-	_	-
Veh in Median Storage	e, # 0	-	0		_	0
Grade, %	0	_	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	133	133	0	278	
MALLICA	U	133	133	U	2/8	278
Major/Minor	Minor1	N	Najor1		Major2	
Conflicting Flow All	967	133	0	0	133	0
Stage 1	133	T 2			L .	
Stage 2	834	_	4	_	_	2
Critical Hdwy	6.42	6.22			4.12	
Critical Hdwy Stg 1	5.42	0.22		100	4.12	
	5.42					
Critical Hdwy Stg 2		0.040		-	0.040	5
Follow-up Hdwy	3.518	3.318	-	-	2.218	*
Pot Cap-1 Maneuver	282	916			1452	*
Stage 1	893			*	#/	-
Stage 2	426	+	-	-		-
Platoon blocked, %				2		-
Mov Cap-1 Maneuver	218	916	- 2	2	1452	-
Mov Cap-2 Maneuver	218	=	ü	₩.		-
Stage 1	691	-	-	-		
Stage 2	426	-	-	-		
A STATE OF THE STA						
400.882666	SALA		ND	NAME OF TAXABLE PARTY.	00	
	WB	MAN PAR	NB	Marcol	SB	35,5
HCM Control Delay, s	9.6		0		4	
HCM LOS	Α					
Minor Lane/Major Mvn	at our seal	NBT	NIDDV	VBLn1	SBL	SBT
	IL	ND!		_		
Capacity (veh/h)		- 10 II	a		1452	
HCM Lane V/C Ratio		2		0.146		-
HCM Control Delay (s)	COLUMN TO		-	9.6	8.1	0
HCM Lane LOS			-	Α	Α	A
HCM 95th %tile Q(veh)	1 5	•	0.5	0.7	676

Intersection	197 9	Call C		130			IN THE PROPERTY OF THE PURPOSE OF
Int Delay, s/veh	2.8						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		f)			4	
Traffic Vol, veh/h	0	15	21	0	69	117	
Future Vol, veh/h	0	15	21	0	69	117	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None		None		None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage	e,# 0		0		-	0	
Grade, %	0	-	0		-	0	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	17	23	0	77	130	
Major/Minor	Minor1	To No.	Major1	NEW W	Major2		SIVE DE L'ALCE SE L'AND SE L'A
Conflicting Flow All	307	23	0	0	23	0	
Stage 1	23	23		U	23		
Stage 2	284	-			-		
Critical Hdwy	6.42	6.22	-	*	4.12	-	
Critical Hdwy Stg 1	5.42	0.22			4.12	-	
Critical Hdwy Stg 2	5.42					•	
Follow-up Hdwy	3.518	3.318			2 240	1.0	
Pot Cap-1 Maneuver	685		Ti.	-	2.218	18	
	1000	1054	-		1592		
Stage 1 Stage 2	764		#			100	
Stage 2 Platoon blocked, %	104		*	•	•		
Mov Cap-1 Maneuver	649	1054	-	=	1592	(2 4)	
Mov Cap-1 Maneuver	649	1004	2		1092	725	
Stage 1	948		-				
Stage 2	764		2 S		*	150	
Olaye Z	104		ē.		72	() 2 (
					200		
Approach	WB	Carl Page	NB		SB	ve / ni	
HCM Control Delay, s	8.5		0		2.7		
HCM LOS	Α						
Minor Lane/Major Mvn	nt	NBT		VBLn1	SBL	SBT	
Capacity (veh/h)				1054			
HCM Lane V/C Ratio		2	2	0.016		-	
HCM Control Delay (s)		-	- 2	8.5	7.4	0	
HCM Lane LOS HCM 95th %tile Q(veh		÷	÷	Α	A 0.2	Α	

Intersection	75.10		W.						S IS WATER	A XIII S		120-1	
Int Delay, s/veh	5.6												
Movement	WBL	WBR	NBT	NBR	SBL	SBT			North N				self si
Lane Configurations	W		1>			4							
Traffic Vol, veh/h	0	120	56	0	168	80							
Future Vol, veh/h	0	120	56	0	168	80							
Conflicting Peds, #/hr	0	0	0	0	0	0							
Sign Control	Stop	Stop	Free	Free	Free	Free							
RT Channelized		None		None	- 100	None							
Storage Length	0	-	-	-	_	110110							
Veh in Median Storage			0			0							
Grade, %	0	-	0		_	0							
Peak Hour Factor	90	90	90	90	90	90							
Heavy Vehicles, %	2	2	2	2	2	2							
Mvmt Flow	0	133	62	0									
WINTER TOW	U	100	02	U	187	89							
Major/Minor	Minor1		Major1	O. Share	Major2						REAL PROPERTY.		925504114
Conflicting Flow All	525	62	0	0	62	0							
Stage 1	62	UL	-	U	UZ								
Stage 2	463			-		**							
Critical Hdwy	6.42	6.22			4.40	•							
Critical Hdwy Stg 1	5.42	0.22		-	4.12	9							
Critical Hdwy Stg 2	5.42		<u> </u>			1151							
Follow-up Hdwy		2 240		-	0.040								
Pot Cap-1 Maneuver	3.518	3.318	- 1		2.218	(***							
	513	1003	1.73	- 1.	1541								
Stage 1	961	(*	377	·**	:#:	100							
Stage 2	634	: . .											
Platoon blocked, %		1000				343							
Mov Cap-1 Maneuver	447	1003		*	1541	5.1							
Mov Cap-2 Maneuver	447		-12	**									
Stage 1	838	1.20	127										
Stage 2	634		•		: * 3								
pproach	WB		NB		SB		\$13 mg	A MAN SE	OFFICE STATE	10,10	S., 18		Salar
HCM Control Delay, s	9.1		0		5.2								
ICM LOS	Α												
linor Lane/Major Mvm	t de	NBT	NBRW	'BLn1	SBL	SBT		ISE E.					
apacity (veh/h)		-		1003	1541	- 2							
CM Lane V/C Ratio		:=		0.133		-							
CM Control Delay (s)				9.1	7.7	0							
ICM Lane LOS		-	-	Α	Α	Α							

Intersection				383 J		1.0			Water 1 1					
Int Delay, s/veh	8.7													
Movement	WBL	WBR	NBT	NBR	SBL	SBT		Acres 6	A COUNTY	(all b)			THE SA	
Lane Configurations	**		\$			4								
Traffic Vol, veh/h	0	254	1	0	90	8								
Future Vol, veh/h	0	254	1	0	90	8								
Conflicting Peds, #/hr	0	0	0	0	0	0								
Sign Control	Stop	Stop	Free	Free	Free	Free								
RT Channelized		None	-	None	147	None								
Storage Length	0	-	-	-	-	-								
Veh in Median Storage	e,# 0	-	0	-	-	0								
Grade, %	0	-	0	-		0								
Peak Hour Factor	90	90	90	90	90	90								
Heavy Vehicles, %	2	2	2	2	2	2								
Mvmt Flow	0	282	1	0	100	9								
Major/Minor	Minor1		Major1	930	Major2				-v 19-0					
Conflicting Flow All	210	1	0	0	1	0						7017		
Stage 1	1			-										
Stage 2	209	-	***	-		- 6								
Critical Hdwy	6.42	6.22	123		4.12									
Critical Hdwy Stg 1	5.42	-			-									
Critical Hdwy Stg 2	5.42					-								
Follow-up Hdwy	3.518	3.318	-		2.218									
Pot Cap-1 Maneuver	778	1084			1622									
Stage 1	1022	_			4	-								
Stage 2	826	-			- 2									
Platoon blocked, %			-	- 2		4								
Mov Cap-1 Maneuver	730	1084		1	1622									
Mov Cap-2 Maneuver	730	_	4	4										
Stage 1	959													
Stage 2	826													
Approach	WB		NB		SB			A LL		is to the		and the second	a Louis	
HCM Control Delay, s	9.5	,,,,	0		6,8						- N		7	-
HCM LOS	A		9		3,0									
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT	AU 2 8			110(35)	aris I			
Capacity (veh/h)			-	1084	1622	2								
HCM Lane V/C Ratio		2	2		0.062	-								
HCM Control Delay (s)		22		9.5	7.4	0								
HCM Lane LOS		9	-	A	A	Ä								
HCM 95th %tile Q(veh)		**		1	0.2	-								
-,,					J									

Intersection	The local ball		Sales of the sales		TIEV!					Q-121.						10
Int Delay, s/veh	6.7															
Movement	WBL	WBR	NBT	NBR	SBL	SBT	(E) (S)	The St	I SHIP	W W	8-2-5	1	W.S.	100	'v 37	
Lane Configurations	KA.		1}→			4										
Traffic Vol, veh/h	0	285	120	0	531	250										
Future Vol, veh/h	0	285	120	0	531	250										
Conflicting Peds, #/hr	0	0	0	0	0	0										
Sign Control	Stop	Stop	Free	Free	Free	Free										
RT Channelized		None	+	None		None										
Storage Length	0	-	-	-	-	말										
Veh in Median Storage	e, # 0	-	0		-	0										
Grade, %	0	-	0	-	-	0										
Peak Hour Factor	90	90	90	90	90	90										
Heavy Vehicles, %	2	2	2	2	2	2										
Mvmt Flow	0	317	133	0	590	278										
Major/Minor	Minor1	N.	/lajor1	SEE SE	Мајог2					i eli		1280				6
Conflicting Flow All	1591	133	0	0	133	0										
Stage 1	133		- 1			-										
Stage 2	1458	2	¥		-	-										
Critical Hdwy	6.42	6.22	-		4.12	-										
Critical Hdwy Stg 1	5.42		-	-	-	=										
Critical Hdwy Stg 2	5.42				AT 11 -	+										
Follow-up Hdwy	3.518	3.318	9	-	2.218											
Pot Cap-1 Maneuver	118	916	*	-	1452											
Stage 1	893	94	2	-	μ	<u> 1</u> 21										
Stage 2	214	2	2	2	2	- 2										
Platoon blocked, %			2													
Mov Cap-1 Maneuver	61	916			1452											
Mov Cap-2 Maneuver	61		5			=										
Stage 1	464	-		-												
Stage 2	214	-			*	*										
Approach	WB		NB		SB		1588 7		Party.							
HCM Control Delay, s	11		0		6.2											
HCM LOS	В															
Minor Lane/Major Mvn	nt de	NBT	NBRV	VBLn1	SBL	SBT		4137	BIXE!		BE 1					
Capacity (veh/h)	il ai		-	916	1452							III.	11 11		H.V	
HCM Lane V/C Ratio		-	-	0.346		-										
HCM Control Delay (s)			14.	11	9.2	0										
HCM Lane LOS			-	В	Α	Α										
HCM 95th %tile Q(veh)	+	.	1.6	2											

Intersection	i di		Ama		e di	TO NO			- 6-0	A IVE					48.08	
Int Delay, s/veh	5.4															
Movement	WBL	WBR	NBT	NBR	SBL	SBT		Jan.	SAINE.			MA CA	158		1 Tools	
Lane Configurations	¥		1>			4										
Traffic Vol, veh/h	0	143	21	0	111	117										
Future Vol, veh/h	0	143	21	0	111	117										
Conflicting Peds, #/hr	0	0	0	0	0	0										
Sign Control	Stop	Stop	Free	Free	Free	Free										
RT Channelized		None	(#)	None		None										
Storage Length	0	-	-	-	-	-										
Veh in Median Storage	e, # 0		0			0										
Grade, %	0	-	0	-	-	0										
Peak Hour Factor	90	90	90	90	90	90										
Heavy Vehicles, %	2	2	2	2	2	2										
Mvmt Flow	0	159	23	0	123	130										
Major/Minor	Minor1	1	Major1	5.61	Major2											M File
Conflicting Flow All	399	23	0	0	23	0										
Stage 1	23		- 4	-												
Stage 2	376	-				-										
Critical Hdwy	6.42	6.22		-	4.12											
Critical Hdwy Stg 1	5.42															
Critical Hdwy Stg 2	5.42					- =										
Follow-up Hdwy	3.518	3.318	12	-	2.218	12										
Pot Cap-1 Maneuver	607	1054	2	-	1592	-										
Stage 1	1000	- 2	12	-	-	2										
Stage 2	694		2													
Platoon blocked, %			-	-		5										
Mov Cap-1 Maneuver	557	1054		-	1592	*										
Mov Cap-2 Maneuver	557	-	-	-	-	¥										
Stage 1	917		-	-												
Stage 2	694	-	-	-	-	2										
Approach	WB	TEN S	NB		SB					11.59	fla.	to divisi		N ST	القارية	
HCM Control Delay, s	9		0		3.6											
HCM LOS	Α															
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT	1 SA 21 MI									
Capacity (veh/h)	N III			1054	1592	7.					U I					
HCM Lane V/C Ratio				0.151												
HCM Control Delay (s)				9	7.5	0										
HCM Lane LOS		-		A	Α	A										
HCM 95th %tile Q(veh)		-	0.5	0.3	1										
1																

Intersection		State		al av	RES.		TAST SEE	A SECTION	10 10 mg	PRINT.	-575			
Int Delay, s/veh	7.8													
Movement	WBL	WBR	NBT	NBR	SBL	SBT						MILE N		
Lane Configurations	Y		ĵ.			र्स								
Traffic Vol, veh/h	0	313	56	0	394	80								
Future Vol, veh/h	0	313	56	0	394	80								
Conflicting Peds, #/hr	0	0	0	0	0	0								
Sign Control	Stop	Stop	Free	Free	Free	Free								
RT Channelized		None	٠.	None		None								
Storage Length	0	-	-	-	-	-								
Veh in Median Storage	e, # 0	10.14	0			0								
Grade, %	0	-	0	-	-	0								
Peak Hour Factor	90	90	90	90	90	90								
Heavy Vehicles, %	2	2	2	2	2	2								
Mvmt Flow	0	348	62	0	438	89								
Major/Minor	Minor1		Major1	6.1	Major2			La Care				(455/5)		
Conflicting Flow All	1027	62	0	0	62	0			THE DESCRIPTION	Carl Ser		-		
Stage 1	62	-	-	-	02	-								
Stage 2	965			- V										
Critical Hdwy	6.42	6.22		ı	4.12									
Critical Hdwy Stg 1	5.42	0.22			7.12									
Critical Hdwy Stg 2	5.42													
Follow-up Hdwy	3.518	3.318			2.218									
Pot Cap-1 Maneuver	260	1003	-		1541	12								
Stage 1	961	-	_	2	1011									
Stage 2	370				2	- 2								
Platoon blocked, %			- 2			-								
Mov Cap-1 Maneuver	182	1003	W .		1541	-								
Mov Cap-2 Maneuver	182	-			-	-								
Stage 1	674				-									
Stage 2	370	-		-	*									
Approach	WB	in a	NB		SB					a dialest				
HCM Control Delay, s	10.5		0		6.9	-		_		-		-		HORSE !
HCM LOS	В		U		0.0									
TIOM EGG														
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT			Daniel Co.		ST ST	5/0.77	AGE AND	AL SI
Capacity (veh/h)	TITLE T		7	1003	1541			1	7011					
HCM Lane V/C Ratio		-		0.347										
HCM Control Delay (s)	dist.			10.5	8.3	0								
HCM Lane LOS		-	-	В	Α	Α								
HCM 95th %tile Q(veh)	×	-	1.6	1.2									

Intersection	10000				Mag .	1985	
Int Delay, s/veh	8.7						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		1			ન	
Traffic Vol, veh/h	0	250	4	0	83	7	
Future Vol, veh/h	0	250	4	0	83	7	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	- 11	None	-	None		None	
Storage Length	0	-					
Veh in Median Storage	e,# 0	-	0			0	
Grade, %	0		0	-		0	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	278	4	0	92	8	
Major/Minor	Minor1		Major1	See S	Major2		
Conflicting Flow All	196	4	0	0	4	0	
Stage 1	4					_	
Stage 2	192	_			=	-	
Critical Hdwy	6.42	6.22			4.12		
Critical Hdwy Stg 1	5.42	-	-	2	-	4	
Critical Hdwy Stg 2	5.42						
Follow-up Hdwy	3.518	3.318	-	-	2.218		
Pot Cap-1 Maneuver	793	1080			1618	(+)	
Stage 1	1019	-				7±0	
Stage 2	841					-	
Platoon blocked, %			-	-		14	
Mov Cap-1 Maneuver	748	1080		-	1618	-	
Mov Cap-2 Maneuver	748	-	-	-			
Stage 1	961		-	-			
Stage 2	841	-	-	-	-	(*	
Approach	WB		NB		SB		
HCM Control Delay, s	9.5	NO PLEASE	0		6.8		
HCM LOS	А				- 55		
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT	
Capacity (veh/h)				1080			
HCM Lane V/C Ratio		2		0.257		-	
HCM Control Delay (s)				9.5	7.4	0	
HCM Lane LOS				Α	Α	Ä	
HCM 95th %tile Q(veh))	15	-	1	0.2		
,							

Intersection	laviayi						HIER								SPI		
Int Delay, s/veh	4.8																_
Movement	WBL	WBR	NBT	NBR	SBL	SBT		DES	E SIN	MED N	10 m		AUTO	9.1		S SYS	33
Lane Configurations	Y		1-			ની											
Traffic Vol, veh/h	0	165	120	0	281	250											
Future Vol, veh/h	0	165	120	0	281	250											
Conflicting Peds, #/hr	0	0	0	0	0	0											
Sign Control	Stop	Stop	Free	Free	Free	Free											
RT Channelized		None	-	None		None											
Storage Length	0	-	-	-	-	-											
Veh in Median Storage	e, # 0		0			0											
Grade, %	0	-	0	-	-	0											
Peak Hour Factor	90	90	90	90	90	90											
Heavy Vehicles, %	2	2	2	2	2	2											
Mvmt Flow	0	183	133	0	312	278											
Major/Minor	Minor1		Major1	1/	Major2							36 3					13
Conflicting Flow All	1035	133	0	0	133	0											
Stage 1	133	_			-												
Stage 2	902				-	-											
Critical Hdwy	6.42	6.22	T , L	Τ.	4.12												
Critical Hdwy Stg 1	5.42	-	-		-												
Critical Hdwy Stg 2	5.42	-		٠													
Follow-up Hdwy	3.518	3.318	-	-	2.218	-											
Pot Cap-1 Maneuver	257	916	-	-	1452												
Stage 1	893	-	-	14	2												
Stage 2	396	-	-	2		-											
Platoon blocked, %			ě	2													
Mov Cap-1 Maneuver	192	916	-		1452	-											
Mov Cap-2 Maneuver	192	-	-	Ħ	8	*											
Stage 1	666	-				-											
Stage 2	396	-	-	(4	-	2											
Approach	WB		NB	S-ILAN	SB		and the l							ME		3 / 5 W	75
HCM Control Delay, s	9.9		0		4.3												
HCM LOS	Α																
Minor Lane/Major Mvm	ıt	NBT	NBRV	VBLn1	SBL	SBT		3	Marie I			032	ass	SEE N	5003	Shirt I	-
Capacity (veh/h)		-	-		1452	-											
HCM Lane V/C Ratio			.E		0.215	- 1											
HCM Control Delay (s)		115		9.9	8.2	0											
HCM Lane LOS				Α.	Α.2	A											
HCM 95th %tile Q(veh)		- 11	-	0.7	0.8	-											
					3.0												

Intersection	1000					25020
Int Delay, s/veh	5.7					
		MDD	NOT	NDD	001	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	N/		\$			र्भ
Traffic Vol, veh/h	0	128	15	0	42	69
Future Vol, veh/h	0	128	15	0	42	69
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	-	None
Storage Length	0	-	-	-		-
Veh in Median Storage	e,# 0	and the	0	-	1	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	142	17	0	47	77
IAIAIIIT I IOAA	U	142	17	U	41	1.1
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	188	17	0	0	17	0
Stage 1	17	*	111. 2		-	-
Stage 2	171	2	2		2	
Critical Hdwy	6.42	6.22			4.12	
Critical Hdwy Stg 1	5.42	-	-		-	
Critical Hdwy Stg 2	5.42					
Follow-up Hdwy	3.518	3.318	-	_	2.218	
Pot Cap-1 Maneuver	801	1062			1600	
Stage 1	1006	1002		i i	1000	
Stage 2	859	-		-	-	
	009	-		-	-	•
Platoon blocked, %	770	1000	2		4000	
Mov Cap-1 Maneuver	776	1062	-	•	1600	
Mov Cap-2 Maneuver	776			-	7:	1.7
Stage 1	975	-	-			
Stage 2	859			*	Ħ	(#)
Approach	WB		NB		SB	
HCM Control Delay, s	8.9		0		2.8	
HCM LOS	0.9 A		U		2.0	
HOM FOS	А					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		2		1062	1600	-
HCM Lane V/C Ratio		ş		0.134		107
HCM Control Delay (s)		N		8.9	7.3	0
HCM Lane LOS				Α.5	7.5 A	A
HCM 95th %tile Q(veh			7/	0.5	0.1	A -
TION BOUT WILL CALLED)	Ħ.	#.	0.5	U, I	

Intersection	Tarille.		(Mail					rug (s	137	Here.	ES.F.	4.3	den lite	
Int Delay, s/veh	5.3													
Movement	WBL	WBR	NBT	NBR	SBL	SBT	B. Migall		1	PE	- British			Sign of the last
Lane Configurations	¥		1>			4								
Traffic Vol, veh/h	0	193	120	0	226	168								
Future Vol, veh/h	0	193	120	0	226	168								
Conflicting Peds, #/hr	0	0	0	0	0	0								
Sign Control	Stop	Stop	Free	Free	Free	Free								
RT Channelized		None	-	None		None								
Storage Length	0	-	-	-	-	-								
Veh in Median Storage	e,# 0	T 47	0	-		0								
Grade, %	0	-	0	-	-	0								
Peak Hour Factor	90	90	90	90	90	90								
Heavy Vehicles, %	2	2	2	2	2	2								
Mvmt Flow	0	214	133	0	251	187								
Major/Minor	Minor1	N	/lajor1		Major2							4.57	S. OTR	a NES
Conflicting Flow All	822	133	0	0	133	0			-			True III	E PA	
Stage 1	133	133	-	0	133	-								
Stage 2	689			-	0.5									
Critical Hdwy	6.42	6.22			4.12	- 5								
Critical Hdwy Stg 1	5.42	0.22			7.12									
Critical Hdwy Stg 2	5.42			- 2										
Follow-up Hdwy	3.518	3.318	-		2.218									
Pot Cap-1 Maneuver	344	916			1452									
Stage 1	893	010			1102	2								
Stage 2	498		-	-	-	- 2								
Platoon blocked, %			2	2		- 2								
Mov Cap-1 Maneuver	278	916			1452	- E								
Mov Cap-2 Maneuver	278	-	-			-								
Stage 1	721				*	-								
Stage 2	498				-									
Approach	WB	15 15 6	NB	SUPER	SB	0. H/L						1.11.3	Sugar	
HCM Control Delay, s	10.1		0		4.6									
HCM LOS	В		7											
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT			المراجعة			Sleva.		asa milis
Capacity (veh/h)				916	1452	7			- 1	True		Big		
HCM Lane V/C Ratio			8	0.234		=								
HCM Control Delay (s))	E . 5	-	10.1	8	0								
HCM Lane LOS		-		В	Α	Α								
HCM 95th %tile Q(veh)			0.9	0.6									

	۶	→	*	•	←	*	1	1	<i>></i>	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	↑↑	7	ሻ	^ }		ħ	∱-			44	
Traffic Volume (veh/h)	2	153	13	2	726	0	3	0	2	3	0	12
Future Volume (veh/h)	2	153	13	2	726	0	3	0	2	3	0	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	2	170	14	2	807	0	3	0	2	3	0	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	198	1579	704	198	1579	0	319	0	176	111	17	144
Arrive On Green	0.11	0.44	0.44	0.11	0.44	0.00	0.11	0.00	0.11	0.11	0.00	0.11
Sat Flow, veh/h	1781	3554	1585	1781	3647	0	1401	0	1585	146	152	1292
Grp Volume(v), veh/h	2	170	14	2	807	0	3	0	2	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	0	1401	0	1585	1591	0	0
Q Serve(g_s), s	0.0	1.3	0.2	0.0	7.3	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	1.3	0.2	0.0	7.3	0.0	0.1	0.0	0.1	0.4	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		1.00	0.19		0.81
Lane Grp Cap(c), veh/h	198	1579	704	198	1579	0	319	0	176	272	0	0
V/C Ratio(X)	0.01	0.11	0.02	0.01	0.51	0.00	0.01	0.00	0.01	0.06	0.00	0.00
Avail Cap(c_a), veh/h	198	1579	704	198	1579	0	786	0	704	788	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	17.8	7.3	7.0	17.8	9.0	0.0	17.8	0.0	17.8	18.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.1	0.0	1.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	0.7	0.1	0.0	4.1	0.0	0.0	0.0	0.0	0.3	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	17.8	7.4	7.1	17.8	10.2	0.0	17.8	0.0	17.8	18.0	0.0	0.0
LnGrp LOS	В	Α	Α	В	В	Α	В	Α	В	В	Α	Α
Approach Vol, veh/h		186		-	809			5	-		16	E .
Approach Delay, s/veh		7.5			10.2			17.8			18.0	
Approach LOS		Α			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		10.0	10.0	25.0		10.0	10.0	25.0			11	
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		20.0	5.0	20.0		20.0	5.0	20.0				
Max Q Clear Time (g_c+l1), s		2.1	2.0	3.3		2.4	2.0	9.3				
Green Ext Time (p_c), s		0.0	0.0	0.9		0.0	0.0	4.0				
Intersection Summary			E LES			A SECTION ASSESSMENT		dial San				PUN
HCM 6th Ctrl Delay			9.9				1111					
HCM 6th LOS			Α									

	۶	→	*	1	4	1	4	†	*	-	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7) j	↑ ↑		ħ	f)			44	
Traffic Volume (veh/h)	4	826	450	49	401	2	214	2	24	1	1	3
Future Volume (veh/h)	4	826	450	49	401	2	214	2	24	1	1	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1,00		1.00	1.00		1,00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	4	918	417	54	446	2	238	2	27	1	1	3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	168	1475	658	168	1506	7	430	23	309	113	104	204
Arrive On Green	0.09	0.42	0.42	0.09	0.42	0.42	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	1781	3554	1585	1781	3628	16	1412	110	1491	154	501	983
Grp Volume(v), veh/h	4	918	417	54	218	230	238	0	29	5	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1867	1412	0	1602	1639	0	0
Q Serve(g_s), s	0.1	10.8	11.1	1.5	4.3	4.3	8.3	0.0	0.8	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	10.8	11.1	1.5	4.3	4.3	8.5	0.0	0.8	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		0.93	0.20		0.60
Lane Grp Cap(c), veh/h	168	1475	658	168	738	775	430	0	332	421	0	0
V/C Ratio(X)	0.02	0.62	0.63	0.32	0.30	0.30	0.55	0.00	0.09	0.01	0.00	0.00
Avail Cap(c_a), veh/h	168	1475	658	168	738	775	617	0	544	631	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	21.8	12.2	12.3	22.4	10.3	10.3	20.0	0.0	17.0	16.7	0.0	0.0
Incr Delay (d2), s/veh	0.1	2.0	4.6	1.1	1.0	1.0	1.1	0.0	0.1	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	6.8	7.1	1.1	2.8	3.0	4.9	0.0	0.5	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	21.8	14.2	16.9	23.5	11.4	11.3	21.1	0.0	17.1	16.7	0.0	0.0
LnGrp LOS	С	В	В	С	В	В	С	Α	В	В	Α	Α
Approach Vol, veh/h		1339			502			267	_		5	
Approach Delay, s/veh		15.1			12.6			20.7			16.7	
Approach LOS		В			В			С			В	
Timer - Assigned Phs		2	3	4	I HIW	6	7	8		5070		
Phs Duration (G+Y+Rc), s		16.0	10.0	27.0		16.0	10.0	27.0			T. All	
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		18.0	5.0	22.0		18.0	5.0	22.0				
Max Q Clear Time (g_c+l1), s		10.5	3.5	13.1		2.1	2.1	6.3				
Green Ext Time (p_c), s		0.5	0.0	5.0		0.0	0.0	2.2				
Intersection Summary		S Many			REPLY		TENES.	SVIE NE	er simi		WE'VAL	
HCM 6th Ctrl Delay	141,6		15.2									
HCM 6th LOS			В									

	۶	→	*	•	-	4	1	†	<i>></i>	1	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	^	7	ř	↑ ↑		ř	1>			4	
Traffic Volume (veh/h)	3	71	172	14	310	1	32	0	4	2	0	13
Future Volume (veh/h)	3	71	172	14	310	1	32	0	4	2	0	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1,00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	79	-26	16	344	1	36	0	4	2	0	14
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	189	1663	742	189	1701	5	306	0	169	96	11	148
Arrive On Green	0.11	0.47	0.00	0.11	0.47	0.47	0.11	0.00	0.11	0.11	0.00	0.11
Sat Flow, veh/h	1781	3554	1585	1781	3635	11	1400	0	1585	94	104	1391
Grp Volume(v), veh/h	3	79	-26	16	168	177	36	0	4	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1400	0	1585	1589	0	0
Q Serve(g_s), s	0.1	0.6	0.0	0.4	2.6	2.6	0.6	0.0	0.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	0.6	0.0	0.4	2.6	2.6	1.0	0.0	0.1	0.4	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.12		0.87
Lane Grp Cap(c), veh/h	189	1663	742	189	832	875	306	0	169	255	0	0
V/C Ratio(X)	0.02	0.05	-0.04	0.08	0.20	0.20	0.12	0.00	0.02	0.06	0.00	0.00
Avail Cap(c_a), veh/h	189	1663	742	189	832	875	693	0	607	687	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	18.8	6.8	0.0	18.9	7.3	7.3	19.2	0.0	18.8	19.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.0	0.2	0.5	0.5	0.2	0.0	0.1	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	0.3	0.0	0.3	1.5	1.6	0.6	0.0	0.1	0.3	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	18.8	6.9	0.0	19.1	7.9	7.9	19.4	0.0	18.9	19.1	0.0	0.0
LnGrp LOS	В	Α	Α	В	Α	Α	В	Α	В	В	Α	Α
Approach Vol, veh/h		56			361			40			16	
Approach Delay, s/veh		10.7			8.4			19.3			19.1	
Approach LOS		В			Α			В			В	
Timer - Assigned Phs	5/10 E	2	3	4		6	7	8		211216	I A	300
Phs Duration (G+Y+Rc), s		10.0	10.0	27.0		10.0	10.0	27.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		18.0	5.0	22.0		18.0	5.0	22.0				
Max Q Clear Time (g_c+l1), s		3.0	2.4	2.6		2.4	2.1	4.6				
Green Ext Time (p_c), s		0.1	0.0	0.3		0.0	0.0	1.7				
Intersection Summary	XISTE.			B.H.W.	Sast.		ME ST	SATE.			Statut.	
HCM 6th Ctrl Delay			9.9						7			
HCM 6th LOS			А									

	٨	→	*	•	-	*	4	†	<i>></i>	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	35	^	7	ሻ	↑ ↑		7	^;			4	
Traffic Volume (veh/h)	1	483	224	20	616	2	150	0	26	3	4	2
Future Volume (veh/h)	1	483	224	20	616	2	150	0	26	3	4	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	1	537	166	22	684	2	167	0	29	3	4	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	195	1404	626	195	1436	4	394	0	263	158	166	62
Arrive On Green	0.11	0.39	0.39	0.11	0.39	0.39	0.17	0.00	0.17	0.17	0.17	0.17
Sat Flow, veh/h	1781	3554	1585	1781	3635	11	1410	0	1585	315	1000	376
Grp Volume(v), veh/h	1	537	166	22	334	352	167	0	29	9	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1410	0	1585	1691	0	0
Q Serve(g_s), s	0.0	4.9	3.2	0.5	6.4	6.4	4.9	0.0	0.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	4.9	3.2	0.5	6.4	6.4	5.0	0.0	0.7	0.2	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.33		0.22
Lane Grp Cap(c), veh/h	195	1404	626	195	702	738	394	0	263	386	0	0
V/C Ratio(X)	0.01	0.38	0.27	0.11	0.48	0.48	0.42	0.00	0.11	0.02	0.00	0.00
Avail Cap(c_a), veh/h	195	1404	626	195	702	738	840	0	765	898	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	18.1	9.8	9.3	18.3	10.3	10.3	17.9	0.0	16.1	15.9	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.8	1.0	0.3	2.3	2.2	0.7	0.0	0.2	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	2.9	1.8	0.4	4.2	4.4	2.8	0.0	0.4	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	18.1	10.6	10.4	18.5	12.6	12.5	18.7	0.0	16.3	15.9	0.0	0.0
LnGrp LOS	В	В	В	В	В	В	В	Α	В	В	Α	Α
Approach Vol, veh/h		704			708			196			9	
Approach Delay, s/veh		10.6			12.7			18.3			15.9	
Approach LOS		В			В			В			В	
Timer - Assigned Phs	STATES	2	3	4		6	7	8		WAS S		
Phs Duration (G+Y+Rc), s		12.6	10.0	23.0		12.6	10.0	23.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		22.0	5.0	18.0		22.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		7.0	2.5	6.9		2.2	2.0	8.4				
Green Ext Time (p_c), s		0.5	0.0	3.1		0.0	0.0	2.8				
Intersection Summary	THE REAL PROPERTY.								Sell-in's		Barr	
HCM 6th Ctrl Delay	4		12.5									
HCM 6th LOS			В									

·	۶	-	*	•	+	*	4	†	1	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	↑ ↑		ሻ	₽			4	
Traffic Volume (veh/h)	2	153	88	10	726	0	228	0	27	3	0	12
Future Volume (veh/h)	2	153	88	10	726	0	228	0	27	3	0	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1,00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	2	170	87	11	807	0	253	0	30	3	0	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	182	1306	583	182	1306	0	464	0	355	117	37	289
Arrive On Green	0.10	0.37	0.37	0.10	0.37	0.00	0.22	0.00	0.22	0.22	0.00	0.22
Sat Flow, veh/h	1781	3554	1585	1781	3647	0	1401	0	1585	134	164	1292
Grp Volume(v), veh/h	2	170	87	11	807	0	253	0	30	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	0	1401	0	1585	1590	0	0
Q Serve(g_s), s	0.0	1.6	1.8	0.3	9.1	0.0	7.9	0.0	0.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	1.6	1.8	0.3	9.1	0.0	8.2	0.0	0.7	0.4	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		1.00	0.19		0.81
Lane Grp Cap(c), veh/h	182	1306	583	182	1306	0	464	0	355	444	0	0
V/C Ratio(X)	0.01	0.13	0.15	0.06	0.62	0.00	0.55	0.00	0.08	0.04	0.00	0.00
Avail Cap(c_a), veh/h	182	1306	583	182	1306	0	779	0	712	791	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.8	10.3	10.4	19.9	12.7	0.0	17.9	0.0	15.0	14.9	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.2	0.5	0.1	2.2	0.0	1.0	0.0	0.1	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	0.9	1.1	0.2	5.9	0.0	4.6	0.0	0.5	0.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	19.8	10.5	10.9	20.0	14.9	0.0	18.9	0.0	15.1	14.9	0.0	0.0
LnGrp LOS	В	В	В	С	В	Α	В	Α	В	В	Α	Α
Approach Vol, veh/h		259			818			283			16	
Approach Delay, s/veh		10.7			14.9			18.5			14.9	
Approach LOS		В			В			В			В	
Timer - Assigned Phs	11 to 1	2	3	4		6	7	8	70 34	- Sy 1944	1/4	Mig2
Phs Duration (G+Y+Rc), s		16.0	10.0	23.0		16.0	10.0	23.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		22.0	5.0	18.0		22.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		10.2	2.3	3.8		2.4	2.0	11.1				
Green Ext Time (p_c), s		0.7	0.0	1.0		0.0	0.0	3.0				
Intersection Summary	The Park				We said	H Wal			12 3 19	8/4/23	\$1.00 K	= (0)
HCM 6th Ctrl Delay			14.9									
HCM 6th LOS			В									

	٠	→	*	•	+	4	1	†	*	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	7	†		ħ	∱			44	
Traffic Volume (veh/h)	4	826	703	77	401	2	362	2	41	1	1	3
Future Volume (veh/h)	4	826	703	77	401	2	362	2	41	1	1	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	4	918	587	86	446	2	402	2	46	1	1	3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	160	1146	511	160	1169	5	581	21	488	139	145	311
Arrive On Green	0.09	0.32	0.32	0.09	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32
Sat Flow, veh/h	1781	3554	1585	1781	3628	16	1412	66	1529	194	455	973
Grp Volume(v), veh/h	4	918	587	86	218	230	402	0	48	5	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1867	1412	0	1595	1622	0	0
Q Serve(g_s), s	0.1	13.2	18.0	2.6	5.3	5.3	15.0	0.0	1.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	13.2	18.0	2.6	5.3	5.3	15.1	0.0	1.2	0.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		0.96	0.20		0.60
Lane Grp Cap(c), veh/h	160	1146	511	160	573	602	581	0	510	596	0	0
V/C Ratio(X)	0.03	0.80	1.15	0.54	0.38	0.38	0.69	0.00	0.09	0.01	0.00	0.00
Avail Cap(c_a), veh/h	160	1146	511	160	573	602	686	0	628	713	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	23.2	17.3	18.9	24.3	14.6	14.6	18.0	0.0	13.3	13.0	0.0	0.0
Incr Delay (d2), s/veh	0.1	5.9	87.7	3.6	1.9	1.8	2.4	0.0	0.1	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	9.4	27.2	2.1	3.9	4.0	8.4	0.0	0.7	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	23.3	23.2	106.7	27.9	16.5	16.5	20.4	0.0	13.4	13.0	0.0	0.0
LnGrp LOS	С	С	F	С	В	В	С	Α	В	В	Α	Α
Approach Vol, veh/h		1509			534	34 T		450			5	
Approach Delay, s/veh		55.7			18.3			19.7			13.0	
Approach LOS		Е			В			В			В	
Timer - Assigned Phs	9.3.1	2	3	4		6	7	8				130
Phs Duration (G+Y+Rc), s	1.0	22.8	10.0	23.0		22.8	10.0	23.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0			-	
Max Green Setting (Gmax), s		22.0	5.0	18.0		22.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		17.1	4.6	20.0		2.1	2.1	7.3				
Green Ext Time (p_c), s		0.8	0.0	0.0		0.0	0.0	1.9				
Intersection Summary	50,50					12316	93/8	1125 - IS	WILLIAM TO	SAME S	A BEENE	D. H
HCM 6th Ctrl Delay			41.1							77.77		
HCM 6th LOS			D									

8	۶	→	*	•	+	*	1	†	~	1	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	十 十	7	7	↑ ↑		ሻ	1→			4	
Traffic Volume (veh/h)	3	71	210	18	310	1	147	0	17	2	0	13
Future Volume (veh/h)	3	71	210	18	310	1	147	0	17	2	0	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	79	16	20	344	1	163	0	19	2	0	14
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	164	1701	759	164	1740	5	350	0	243	84	21	214
Arrive On Green	0.09	0.48	0.48	0.09	0.48	0.48	0.15	0.00	0.15	0.15	0.00	0.15
Sat Flow, veh/h	1781	3554	1585	1781	3635	11	1400	0	1585	65	135	1397
Grp Volume(v), veh/h	3	79	16	20	168	177	163	0	19	16	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1400	0	1585	1597	0	0
Q Serve(g_s), s	0.1	0.6	0.3	0.6	3.0	3.0	5.5	0.0	0.6	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	0.6	0.3	0.6	3.0	3.0	5.9	0.0	0.6	0.5	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00		1.00	0.12		0.87
Lane Grp Cap(c), veh/h	164	1701	759	164	851	894	350	0	243	319	0	0
V/C Ratio(X)	0.02	0.05	0.02	0.12	0.20	0.20	0.47	0.00	0.08	0.05	0.00	0.00
Avail Cap(c_a), veh/h	164	1701	759	164	851	894	625	0	554	626	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	22.4	7.5	7.5	22.6	8.2	8.2	21.9	0.0	19.7	19.7	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.1	0.3	0.5	0.5	1.0	0.0	0.1	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	0.4	0.2	0.4	1.8	1.9	3.5	0.0	0.4	0.3	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	22.5	7.6	7.5	23.0	8.7	8.6	22.9	0.0	19.9	19.7	0.0	0.0
LnGrp LOS	С	Α	Α	С	Α	Α	С	Α	В	В	Α	Α
Approach Vol, veh/h		98			365			182			16	
Approach Delay, s/veh		8.0			9.4			22.6			19.7	
Approach LOS		Α			Α			С			В	
Timer - Assigned Phs		2	3	4		6	7	8	Nation 1			PAR
Phs Duration (G+Y+Rc), s		13.3	10.0	31.0		13.3	10.0	31.0				10
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		19.0	5.0	26.0		19.0	5.0	26.0				
Max Q Clear Time (g_c+l1), s		7.9	2.6	2.6		2.5	2.1	5.0				
Green Ext Time (p_c), s		0.4	0.0	0.4		0.0	0.0	1.8				
Intersection Summary		E ARES						165261	315834			25/5
HCM 6th Ctrl Delay			13.1				7-77			1		
HCM 6th LOS			В									

	1	→	*	•	+	*	4	†	~	-	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	个个	7	ሻ	↑ ↑		*	1>			44	
Traffic Volume (veh/h)	1	483	427	43	616	2	324	0	45	3	4	2
Future Volume (veh/h)	1	483	427	43	616	2	324	0	45	3	4	2
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	1	537	368	48	684	2	360	0	50	3	4	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	164	1176	524	164	1202	4	559	0	478	211	264	111
Arrive On Green	0.09	0.33	0.33	0.09	0.33	0.33	0.30	0.00	0.30	0.30	0.30	0.30
Sat Flow, veh/h	1781	3554	1585	1781	3635	11	1410	0	1585	409	874	366
Grp Volume(v), veh/h	1	537	368	48	334	352	360	0	50	9	0	0
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	1781	1777	1868	1410	0	1585	1649	0	0
Q Serve(g_s), s	0.0	6.5	11.0	1.4	8.4	8.4	12.8	0.0	1.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	6.5	11.0	1.4	8.4	8.4	13.0	0.0	1.2	0.2	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.01	1.00	-,-	1.00	0.33	4,0	0.22
Lane Grp Cap(c), veh/h	164	1176	524	164	588	618	559	0	478	586	0	0
V/C Ratio(X)	0.01	0.46	0.70	0.29	0.57	0.57	0.64	0.00	0.10	0.02	0.00	0.00
Avail Cap(c_a), veh/h	164	1176	524	164	588	618	1222	0	1224	1339	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	22.4	14.4	15.9	23.1	15.0	15.0	17.8	0.0	13.7	13.3	0.0	0.0
Incr Delay (d2), s/veh	0.0	1.3	7.6	1.0	4.0	3.8	1.3	0.0	0.1	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.0	4.4	7.9	1.0	6.4	6.6	7.2	0.0	0.8	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	22.5	15.6	23.5	24.0	19.0	18.8	19.0	0.0	13.8	13.3	0.0	0.0
LnGrp LOS	С	В	С	С	В	В	В	Α	В	В	Α	Α
Approach Vol, veh/h		906	1		734			410			9	
Approach Delay, s/veh		18.8			19.2			18.4			13.3	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				NULP OF
Phs Duration (G+Y+Rc), s	77.7	21.4	10.0	23.0		21.4	10.0	23.0				
Change Period (Y+Rc), s		5.0	5.0	5.0		5.0	5.0	5.0				
Max Green Setting (Gmax), s		42.0	5.0	18.0		42.0	5.0	18.0				
Max Q Clear Time (g_c+l1), s		15.0	3.4	13.0		2.2	2.0	10.4				
Green Ext Time (p_c), s		1.4	0.0	2.2		0.0	0.0	2.4				
Intersection Summary	STIFE	I E					18 18		ZAPALIL.	ENVISE N	LI STATE OF	FA 100
HCM 6th Ctrl Delay			18.9									
HCM 6th LOS			В									

Intersection					STATE OF		The Control	NAME OF THE OWNER, OWNE	WINTER STATE	or early	
Int Delay, s/veh	4.2										
Movement	WBL	WBR	NBT	NBR	SBL	SBT	UNITED 1001		Contract to	III STATE OF	12 100
Lane Configurations	¥	TIDIT	4	HUIT	ODL	4		1977			
Traffic Vol, veh/h	0	4	1	0	7	8					
Future Vol, veh/h	0	4	1	0	7	8					
Conflicting Peds, #/hr	0	0	0	0	0	0					
Sign Control	Stop	Stop	Free	Free	Free	Free					
RT Channelized	Stop -	None	-	None	riee	None					
Storage Length	0	NONE	_	None		None					
Veh in Median Storage			0			_					
Grade, %	z, # 0 0		0	_	•	0					
Peak Hour Factor	90	90	90	90	90	90					
Heavy Vehicles, % Mvmt Flow	2	2	2	2	2 8	9					
IVIVITIL FIOW	U	4	1	U	Ŏ	9					
	Minor1	WAR IN	Major1	T MILE	Major2		S ROLL	1000	Luc 3		eli d
Conflicting Flow All	26	1	0	0	1	0					
Stage 1	1	-	14	2	-						
Stage 2	25	-	2	-		ŝ					
Critical Hdwy	6.42	6.22	9		4.12	- 5					
Critical Hdwy Stg 1	5.42	-		ı.	-	Ħ					
Critical Hdwy Stg 2	5.42	-	-		-	*					
Follow-up Hdwy	3.518	3.318		-	2.218	æ					
Pot Cap-1 Maneuver	989	1084			1622	-					
Stage 1	1022	-	-	×	*	-					
Stage 2	998	-	-		*	-					
Platoon blocked, %			2	2		¥					
Mov Cap-1 Maneuver	984	1084	-	-	1622	-					
Mov Cap-2 Maneuver	984	-	-	7	- 5	7.					
Stage 1	1017										
Stage 2	998	-	-	*	×	-					
Approach	WB	printer.	NB		SB			17 3 mm		0.1710	
HCM Control Delay, s	8.3		0		3.4			 W - T- 1	-	1	
HCM LOS	A		U		0,4						
110111 200											
han na sana an		Not	LIDO	Wint 4	.001	057					
Minor Lane/Major Mvm	II	NBT		VBLn1	SBL	SBT		OF DAME	Ca. V.		
Capacity (veh/h)		-		1084	1622						
HCM Lane V/C Ratio		-	Ē	0.004							
HCM Control Delay (s)				8.3	7.2	0					
HCM Lane LOS				A	A	Α					19
HCM 95th %tile Q(veh))	-	-	0	0	(+ r					

Intersection	SHOUL S	380		THE STATE OF								
Int Delay, s/veh	4.3											
Movement	WBL	WBR	NBT	NBR	SBL	SBT		GO BA	(P) 5		E HE	
Lane Configurations	* A		1			ની						
Traffic Vol, veh/h	0	120	120	0	250	250						
Future Vol, veh/h	0	120	120	0	250	250						
Conflicting Peds, #/hr	0	0	0	0	0	0						
Sign Control	Stop	Stop	Free	Free	Free	Free						
RT Channelized	-	None		None	11	None						
Storage Length	0	-	-		-	-						
Veh in Median Storage	e,# 0		0			0						
Grade, %	0	-	0		-	0						
Peak Hour Factor	90	90	90	90	90	90						
Heavy Vehicles, %	2	2	2	2	2	2						
Mvmt Flow	0	133	133	0	278	278						
Major/Minor	Minor1		Major1	20,000	Major2		150.00					
Conflicting Flow All	967	133	0	0	133	0					THEFT	
Stage 1	133	-	-	-		-						
Stage 2	834		-	_								
Critical Hdwy	6.42	6.22		_	4.12							
Critical Hdwy Stg 1	5.42	0.22	-		4.12							
Critical Hdwy Stg 2	5.42	.50	-	-								
Follow-up Hdwy	3.518	3.318		-	2.218							
Pot Cap-1 Maneuver	282	916	-71		1452							
Stage 1	893	310	-	_	1702							
Stage 2	426			12								
Platoon blocked, %	120		-	2								
Mov Cap-1 Maneuver	218	916		2	1452							
Mov Cap-2 Maneuver	218	- 010			1 702	-						
Stage 1	691			12								
Stage 2	426											
Approach	WB		NB		SB					200	- CONT.	
HCM Control Delay, s	9.6		0		4		THE REAL PROPERTY.					
HCM LOS	9.0 A		U		4							
TIOW EOO												
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT		115 050	52K 9	The state of the s		
Capacity (veh/h)			2	916	1452				in er			
HCM Lane V/C Ratio		-	ij.	0.146		7.						
HCM Control Delay (s)				9.6	8.1	0						
HCM Lane LOS			-	A	A	A						
HCM 95th %tile Q(veh)				0.5	0.7							
				2.0	3							

Int Delay, s/veh	Intersection	W. All	- a	4.075			
Lane Configurations		2.8					
Traffic Vol, veh/h Future Vol, veh/h O Future Vol, veh/h O Future Vol, veh/h O O O O O O O O O O O O O O O O O O	Movement		WBR	NBT	NBR	SBL	SBT
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr O O O O O O O O O O O O O O O O O O O	Lane Configurations	N/A		ĵ.			4
Conflicting Peds, #/hr 0	Traffic Vol, veh/h		15		0	69	
Conflicting Peds, #/hr	Future Vol, veh/h	0	15	21			
Sign Control Stop RT Channelized Stop None Free None Free None Free None Storage Length 0 - 0 - - - - None - - - - - - - - - - - - - -	Conflicting Peds, #/hr	0	0	0	0		
RT Channelized	Sign Control	Stop	Stop	Free	Free		
Storage Length	RT Channelized				None		None
Veh in Median Storage, # 0 - 0 - - 0 Grade, % 0 - 0 - - 0 Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 2 2 Mymt Flow 0 17 23 0 77 130 Major/Minor Minor Major! Major? Conflicting Flow All 307 23 0 23 0 Stage 1 23 - - - - - Stage 2 284 - <td>Storage Length</td> <td>0</td> <td>:0::</td> <td>(-</td> <td></td> <td>-</td> <td></td>	Storage Length	0	:0 : :	(-		-	
Grade, % 0 - 0 - 0 - 0 0 90 90 90 90 90 90 90 90 90 90 90 90		e,# 0	-	0	_		0
Peak Hour Factor 90 20 20 90			-			_	
Heavy Vehicles, %		90	90		90	90	
Mymt Flow 0 17 23 0 77 130 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 307 23 0 0 23 0 Stage 1 23 - - - - - Stage 2 284 - - - - - Critical Hdwy St 1 5.42 - - - - - Critical Hdwy Stg 1 5.42 -	Heavy Vehicles, %						
Major/Minor Minor1 Major1 Major2 Conflicting Flow All 307 23 0 0 23 0 Stage 1 23 - - - - - - Stage 2 284 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Conflicting Flow All 307 23 0 0 23 0 Stage 1 23 - - - - Stage 2 284 - - - - Critical Hdwy 6.42 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 - - - Critical Hdwy Stg 2 5.42 - - - Critical Hdwy Stg 2 5.42 - - - Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 685 1054 - 1592 - Stage 1 1000 - - - - Stage 2 764 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver 649 1054 - 1592 - Mov Cap-2 Maneuver 649 - - - Stage 1 948 - - - - Stage 1 948 - - - - Stage 2 764 - - - - Stage 2 764 - - - - Stage 3 948 - - - - Stage 4 948 - - - - Stage 5 764 - - - - Stage 6 764 - - - - Stage 7 764 - - - - Stage 8 Stage 9 764 - - - Approach WB NB SB SB HCM Control Delay, s 8.5 0 2.7 HCM LOS A SB SB HCM Control Delay (s) - 1054 1592 - HCM Lane V/C Ratio - 0.016 0.048 - HCM Control Delay (s) - 8.5 7.4 0 HCM Lane LOS - A A A							
Conflicting Flow All 307 23 0 0 23 0 Stage 1 23 - - - - Stage 2 284 - - - - Critical Hdwy 6.42 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 - - - Critical Hdwy Stg 2 5.42 - - - Critical Hdwy Stg 2 5.42 - - - Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 685 1054 - 1592 - Stage 1 1000 - - - - Stage 2 764 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver 649 1054 - 1592 - Mov Cap-2 Maneuver 649 - - - - Stage 1 948 - - - - Stage 1 948 - - - - Stage 2 764 - - - - Stage 2 764 - - - - Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1054 1592 - HCM Los - 8.5 7.4 0 HCM Control Delay (s) - 8.5 7.4 0 HCM Control Delay (s) - 8.5 7.4 0 HCM Control Delay (s) - 8.5 7.4 0	Major/Minor	Minor1		Major1		Major2	
Stage 1 23 -<							0
Stage 2 284 -							
Critical Hdwy 6.42 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 - Critical Hdwy Stg 2 5.42 - Follow-up Hdwy 3.518 3.318 2.218 - Pot Cap-1 Maneuver 685 1054 - 1592 - Stage 1 1000 - Stage 2 764 - Platoon blocked, % - Mov Cap-1 Maneuver 649 1054 - 1592 - Mov Cap-2 Maneuver 649 1592 - Stage 1 948 - Stage 2 764 - Stage 2 764 - A Stage 2 764 - A Stage 3 948 - B C D D D D D D D D D D D D D D D D D D							
Critical Hdwy Stg 1 5.42 - <td></td> <td></td> <td>6.22</td> <td></td> <td></td> <td>4.12</td> <td></td>			6.22			4.12	
Critical Hdwy Stg 2 5.42 - - - - Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 685 1054 - 1592 - Stage 1 1000 - - - - Stage 2 764 - - - - Mov Cap-1 Maneuver 649 1054 - 1592 - Mov Cap-2 Maneuver 649 - - - - Stage 1 948 - - - - Stage 2 764 - - - - Stage 2 764 - - - - Approach WB NB SB HCM Control Delay, s 8.5 0 2.7 HCM Los A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1054 1592 - - 1	•			120		-	
Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 685 1054 - 1592 - Stage 1 1000 Stage 2 764 Platoon blocked, % 1592 - Mov Cap-1 Maneuver 649 1054 - 1592 - Mov Cap-2 Maneuver 649 Stage 1 948 Stage 2 764 Stage 2 764 Mov Cap-2 Maneuver 649 Stage 1 948 Stage 2 764 Memor Lane/Major Mvmt NB NB SB HCM Control Delay, s 8.5 0 2.7 HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1054 1592 - HCM Lane V/C Ratio - 0.016 0.048 - HCM Control Delay (s) - 8.5 7.4 0 HCM Cane LOS - A A A			1 4			-	- III
Pot Cap-1 Maneuver			3.318		-	2 218	-
Stage 1 1000 -					-		
Stage 2	· ·				-	.002	
Platoon blocked, %							-
Mov Cap-1 Maneuver 649 1054 - 1592 - Mov Cap-2 Maneuver 649 - - - - - Stage 1 948 - - - - - - Stage 2 764 - - - - - - Approach WB NB SB HCM Control Delay, s 8.5 0 2.7 HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 1054 1592 - HCM Lane V/C Ratio - - 0.016 0.048 - HCM Control Delay (s) - - 8.5 7.4 0 HCM Lane LOS - - A A		. • •		(4)			2
Mov Cap-2 Maneuver 649 -		649	1054			1592	
Stage 1 948 -						.002	
Stage 2 764 -				-			
Approach WB NB SB HCM Control Delay, s 8.5 0 2.7 HCM LOS A A A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 1054 1592 - HCM Lane V/C Ratio - - 0.016 0.048 - HCM Control Delay (s) - - 8.5 7.4 0 HCM Lane LOS - - A A A							*
HCM Control Delay, s 8.5 0 2.7 HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1054 1592 - HCM Lane V/C Ratio - 0.016 0.048 - HCM Control Delay (s) - 8.5 7.4 0 HCM Lane LOS - A A A							
HCM Control Delay, s 8.5 0 2.7 HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1054 1592 - HCM Lane V/C Ratio - 0.016 0.048 - HCM Control Delay (s) - 8.5 7.4 0 HCM Lane LOS - A A A	Approach	WB		NB		SB	
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1054 1592 - HCM Lane V/C Ratio - 0.016 0.048 - HCM Control Delay (s) - 8.5 7.4 0 HCM Lane LOS - A A A A							
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 1054 1592 - HCM Lane V/C Ratio - - 0.016 0.048 - HCM Control Delay (s) - - 8.5 7.4 0 HCM Lane LOS - - A A A							
Capacity (veh/h) 1054 1592 - HCM Lane V/C Ratio 0.016 0.048 - HCM Control Delay (s) - 8.5 7.4 0 HCM Lane LOS - A A A							
Capacity (veh/h) 1054 1592 - HCM Lane V/C Ratio 0.016 0.048 - HCM Control Delay (s) - 8.5 7.4 0 HCM Lane LOS - A A A	Minor Lane/Major Mvm	nt	NBT	NBRW	/BLn1	SBL	SBT
HCM Lane V/C Ratio - - 0.016 0.048 - - HCM Control Delay (s) - - 8.5 7.4 0 - HCM Lane LOS - - A			-				
HCM Control Delay (s) 8.5 7.4 0 HCM Lane LOS A A A			2				
HCM Lane LOS A A A			2				
VIA.				-			/ \
					-	312	

	BAB!				No.		
5.6							
WBL	WBR	NBT	NBR	SBL	SBT	For Version	
N/							
	120			168			
				_			
		-		1100			
0	-	-	-	_	-		
		0	Ξ.		0		
	-			-			
	90						
0							
			J	,	00		
Minor1	Carlo I	Major1		Major2			
			100		0		
			Ü	02			
				120			
				4.12			
		- 12					
			-	2 218			
	1000	-		10+1			
	-	-	-	111			
447	1003			1541			
	-	-	2	1071			
				. S			
					77:		
WB	35.70	NB	2 10 1	SB		La Valuati	
		0					
				0,4			
t A	NBT	NBRV	VBLn1	SBL	SBT		COLUMN COLOR DES TRANSPORTE
			1003	1541			
	≅.						
	=		9.1	7.7	0		
		-	Α	Α	Α		
	WBL 0 0 0 Stop 0 90 2 0 Minor1 525 62 463 6.42 5.42 5.42	WBL WBR 0 120 0 120 0 0 120 0 0 Stop Stop - None 0 - 9, # 0 - 90 90 2 2 0 133 Minor1 525 62 62 - 463 - 6.42 6.22 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 6.44 1003 961 - 634 - 447 1003 447 - 838 - 634 - WB 9.1 A	WBL WBR NBT 0 120 56 0 0 0 0 Stop Stop Free - None - - e, # 0 - 0 0 90 90 90 90 2 2 2 0 62 - - 463 - 6.42 6.22 - - 5.42 - - - 3.518 3.318 - 513 1003 - 961 - - 447 1003 - 447 - - 838 - - 634 - - WB NB 9.1 0 A NBT NBRV	WBL WBR NBT NBR 0 120 56 0 0 120 56 0 0 0 0 0 0 0 0 0 0 - 0 - 0 - 0 - 90 90 90 90 2 2 2 2 0 133 62 0 0 0 0 0 90 90 90 90 2 2 2 0 62 - - - 642 6.22 - - 5.42 - - - 5.42 - - - 447 1003 - - 447 1003 - - 447 1003 - - 634 - - - <	WBL WBR NBT NBR SBL WF Free Pree Pree Free Pree Pree Pree Pree Pree Pree	WBL WBR NBT NBR SBL SBT 0 120 56 0 168 80 0 120 56 0 168 80 0 0 0 0 0 0 Stop Stop Free Free Free Free Free - None - None - None - None 0 0 0 0 0 - 0 - 0 - 0 - 0 0 0 0 0 90<	WBL WBR NBT NBR SBL SBT 0 120 56 0 168 80 0 120 56 0 168 80 0 0 0 0 0 0 Stop Stop Free Free Free Free - None - None - None - None 0 - O 0 - 0 - 0 - 0 0 90 <td< td=""></td<>

Intersection	T'ER	Car I		E C		
Int Delay, s/veh	8.7					
Movement		MIDD	NOT	NDD	CDI	CDT
	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	054	f)			र्स
Traffic Vol, veh/h	0	254	1	0	90	8
Future Vol, veh/h	0	254	1	0	90	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-	-	-	-	
Veh in Median Storage	e,# 0		0			0
Grade, %	0	-	0			0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	282	1	0	100	9
INIALLIT IOAA	U	202	- 1	U	100	Э
Major/Minor	Minor1	1000	Major1		Major2	
Conflicting Flow All	210	1	0	0	1	0
Stage 1	1	7.		-	320	-
Stage 2	209	-	V.	102		
Critical Hdwy	6.42	6.22		15	4.12	-
Critical Hdwy Stg 1	5.42	0.22			4.12	
			1175		:::	170
Critical Hdwy Stg 2	5.42	0.040			0.010	.#0
Follow-up Hdwy	3.518	3.318	:::::::::::::::::::::::::::::::::::::::		2.218	*
Pot Cap-1 Maneuver	778	1084	(· •)		1622	
Stage 1	1022					(-)
Stage 2	826			-	Ľ.,	
Platoon blocked, %						120
Mov Cap-1 Maneuver	730	1084	-		1622	
Mov Cap-2 Maneuver	730	-				-
Stage 1	959				1 1 1	18.
Stage 2	826		- 4			120
Olage Z	020	::::	1.5	3,831	(11 5))#
Approach	WB	W RES	NB		SB	
HCM Control Delay, s	9.5		0		6,8	
HCM LOS	A		-		3,0	
	- '					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	٠.	1084	1622	
HCM Lane V/C Ratio		(4)	_		0.062	
HCM Control Delay (s)				9.5	7.4	0
HCM Lane LOS		(47)		9.5 A	7.4 A	A
HCM 95th %tile Q(veh)		27.1		1	0.2	
HOW JOHN JOHN W(VEN)		98			0.2	*

Intersection		1				LH ME		122,00	- 1/535 F	in John			levi-u	
Int Delay, s/veh	6.7									STATE OF				100 300/
Movement	WBL	WBR	NBT	NBR	SBL	SBT	The Rel	Name of Street	200	.42		3.54		S. D. S.
Lane Configurations	N/A		1→			4								
Traffic Vol, veh/h	0	285	120	0	531	250								
Future Vol, veh/h	0	285	120	0		250								
Conflicting Peds, #/hr	0	0	0	0	0	0								
Sign Control	Stop	Stop	Free	Free	Free	Free								
RT Channelized	- 11	None	•	None		None								
Storage Length	0	-	-	-		_								
Veh in Median Storage	e,# 0		0			0								
Grade, %	0	-	0	-	_	0								
Peak Hour Factor	90	90	90	90	90	90								
Heavy Vehicles, %	2	2	2	2	2	2								
Mvmt Flow	0	317	133	0	590	278								
Major/Minor	Minor1	N	Major1		Major2									TO COLUMN
Conflicting Flow All	1591	133	0	0	133	0						KI U		
Stage 1	133	100	-	U	133	-								
Stage 2	1458				-	-								
Critical Hdwy	6.42	6.22			4.12	-								
Critical Hdwy Stg 1	5.42	0.22			4.12	-								
Critical Hdwy Stg 2	5.42													
Follow-up Hdwy		3.318			2.218									
Pot Cap-1 Maneuver	118	916			1452									
Stage 1	893	-			1402									
Stage 2	214													
Platoon blocked, %				-										
Mov Cap-1 Maneuver	61	916	(#0)		1452									
Mov Cap-2 Maneuver	61	-		-	1.10	2								
Stage 1	464	- I	-	1	-	- 2								
Stage 2	214	-	141	0	-									
The second second														
Approach	WB	100	NB		SB	50.3				- NO. (1-1)	THE ST	7.981.1	Wigo-II	JE VALUE
HCM Control Delay, s	11		0		6.2									
HCM LOS	В				J.E									
Minor Lane/Major Mvm	nt	NBT	NBRW	/BLn1	SBL	SBT	Line es evi	BYLK!				ALIES, S	-,437=3	E DE NO
Capacity (veh/h)				916	1452	-					The same of		1000000	
HCM Lane V/C Ratio			-	0.346		-								
HCM Control Delay (s)				11	9.2	0								
HCM Lane LOS		14	-	В	A	A								
HCM 95th %tile Q(veh)			1 21	1.6	2									
					_									

Movement WBL WBR NBT NBR SBL SBT	Intersection		T STATE		15 18	SAR H	24.23	and the same of						
Lane Configurations	Int Delay, s/veh	5.4												
Traffic Vol, veh/h Future Vol,	Movement		WBR	NBT	NBR	SBL	SBT	15 TO 15	CELL WIN	US AND	THE WAY	1	ALL STREET	
Traeffic Vol, veh/h O 143 21 0 111 117 Conflicting Peds, #hr 0 0 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free RT Channelized - None Storage Length 0	Lane Configurations	Y		∱-			4							
Future Vol, veh/h Conflicting Peds, #hr O O O O O O O O O O O O O O O O O O O	Traffic Vol, veh/h	0	143		0	111								
Sign Control Stop Stop Free Ree Ree None Storage Length 0 - <th< td=""><td>Future Vol, veh/h</td><td>0</td><td>143</td><td>21</td><td>0</td><td>111</td><td>117</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Future Vol, veh/h	0	143	21	0	111	117							
RT Channelized - None - None - None Storage Length 0	Conflicting Peds, #/hr	0	0	0	0	0	0							
Storage Length	Sign Control	Stop	Stop	Free	Free	Free	Free							
Veh in Median Storage, # 0 - 0 0 Grade, % 0 - 0 - 0 - 0 Grade, % 0 - 0 - 0 - 0 Grade, % 0 0 - 0 - 0 - 0 Grade, % 0 0 - 0 - 0 - 0 Grade, % 0 0 - 0 - 0 Grade, % 0 0 - 0 - 0 Grade, % 0 0 90 90 90 90 90 90 90 90 90 90 90 90	RT Channelized	4.5	None	L 1-	None		None							
Grade, % 0 - 0 - 0 - 0 Peak Hour Factor 90 90 90 90 90 90 Peak Hour Factor 90 90 90 90 90 Major Micros	Storage Length	0	-	-	-	-	-							
Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 3 0 3	Veh in Median Storage	e, # 0		0		-	0							
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2	Grade, %	0	-	0	-	-	0							
Mwnifelow 0 159 23 0 123 130 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 399 23 0 23 0 Stage 1 23 - - - - - Critical Hdwy 6.42 6.22 - 4.12 -	Peak Hour Factor	90	90	90	90	90	90							
Major/Minor Minor1 Major1 Major2	Heavy Vehicles, %	2	2	2	2	2	2							
Conflicting Flow All 399 23 0 0 23 0 Stage 1 23 Stage 2 376 Critical Hdwy 64 2 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 Critical Hdwy Stg 2 5.42 Follow-up Hdwy 3.518 3.318 2.218 - Pot Cap-1 Maneuver 607 1054 1592 - Stage 1 1000 Stage 2 694 Stage 2 694 Stage 1 917 Stage 1 917 Stage 1 917 Stage 2 694 Stage 1 917 Stage 2 694 Stage 1 917 Stage 2 694 Stage 1 917 Stage 1 917 Stage 1 917 Stage 2 694 Stage 1 917 Stage 2 694 Stage 3 694 Stage 1 917 Stage 2 694	Mvmt Flow	0	159	23	0	123	130							
Conflicting Flow All 399 23 0 0 23 0 Stage 1 23 Stage 2 376 Critical Hdwy 64 2 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 Critical Hdwy Stg 2 5.42 Follow-up Hdwy 3.518 3.318 2.218 - Pot Cap-1 Maneuver 607 1054 1592 - Stage 1 1000 Stage 2 694 Stage 2 694 Stage 1 917 Stage 1 917 Stage 1 917 Stage 2 694 Stage 1 917 Stage 2 694 Stage 1 917 Stage 2 694 Stage 1 917 Stage 1 917 Stage 1 917 Stage 2 694 Stage 1 917 Stage 2 694 Stage 3 694 Stage 1 917 Stage 2 694														
Conflicting Flow All 399 23 0 0 23 0 Stage 1 23 Stage 2 376 Critical Hdwy 64 2 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 Critical Hdwy Stg 2 5.42 Follow-up Hdwy 3.518 3.318 2.218 - Pot Cap-1 Maneuver 607 1054 1592 - Stage 1 1000 Stage 2 694 Stage 2 694 Stage 1 917 Stage 1 917 Stage 1 917 Stage 2 694 Stage 1 917 Stage 2 694 Stage 1 917 Stage 2 694 Stage 1 917 Stage 1 917 Stage 1 917 Stage 2 694 Stage 1 917 Stage 2 694 Stage 3 694 Stage 1 917 Stage 2 694	Major/Minor	Minor1	N	/lajor1	D. John	Major2		PS ESILO			all of			
Stage 1					1000		0							
Stage 2					-									
Critical Hdwy 6.42 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 Critical Hdwy Stg 2 5.42 Critical Hdwy Stg 2 5.42 Follow-up Hdwy 3.518 3.318 2.218 - Pot Cap-1 Maneuver 607 1054 - 1592 - Stage 1 1000 Stage 2 694 Platoon blocked, % Mov Cap-1 Maneuver 557 1054 - 1592 - Mov Cap-2 Maneuver 557 1054 - 1592 - Stage 1 917 Stage 2 694 Stage 2 694 Stage 2 694 Stage 3 917 Stage 4 917 Stage 5 694 Stage 6 694 Stage 7 917 Stage 8 917 Stage 9 694			-		-									
Critical Hdwy Stg 1 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 607 1054 - 1592 - Stage 1 1000 - - - - Stage 2 694 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 557 1054 - 1592 - Mov Cap-2 Maneuver 557 - - - - Stage 1 917 - - - - Stage 2 694 - - - - Stage 2 694 - - - - Approach WB NB SB HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h)			6.22		1.5	4.12								
Critical Hdwy Stg 2 5.42 Follow-up Hdwy 3.518 3.318 - 2.218 Follow-up Hdwy 3.518 3.318 - 2.218 Follow-up Hdwy 3.518 3.318 2.218 Follow-up Hdwy 3.518 3.318 2.218 Follow-up Hdwy 3.518 3.318 2.218 Follow-up Hdwy 4.518 4.5				-	8070		(=)							
Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 607 1054 - 1592 - Stage 1 1000 Stage 2 694 Platoon blocked, % Mov Cap-1 Maneuver 557 1054 - 1592 - Mov Cap-2 Maneuver 557 Stage 1 917 Stage 2 694 Stage 2 694 Approach WB NB SB HCM Control Delay, s 9 0 3.6 HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1054 1592 - HCM Lane V/C Ratio - 0.151 0.077 - HCM Control Delay (s) 9 7.5 0 HCM Lane LOS A A A		5.42		-		9 14								
Stage 1 1000 Stage 2 694	Follow-up Hdwy	3.518	3.318	-	-	2.218								
Stage 2 694 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver 557 1054 - 1592 - Mov Cap-2 Maneuver 557 - - - - Stage 1 917 - - - - Stage 2 694 - - - - Approach WB NB SB HCM Control Delay, s 9 0 3.6 HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h)	Pot Cap-1 Maneuver	607	1054		-	1592								
Platoon blocked, %	Stage 1	1000	243	248	(52)	120	528							
Mov Cap-1 Maneuver 557 1054 - 1592 - Mov Cap-2 Maneuver 557 - - - - Stage 1 917 - - - - Stage 2 694 - - - - Approach WB NB SB HCM Control Delay, s 9 0 3.6 HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 1054 1592 - HCM Lane V/C Ratio - - 0.151 0.077 - HCM Control Delay (s) - 9 7.5 0 HCM Lane LOS - - A A	Stage 2	694	020	-		12	-							
Mov Cap-2 Maneuver 557 -	Platoon blocked, %			-	72		-							
Stage 1 917 -	Mov Cap-1 Maneuver	557	1054			1592	-							
Stage 2 694 - - - - - - - - -	Mov Cap-2 Maneuver		-	1.75	12	3.5	353							
Approach WB NB SB HCM Control Delay, s 9 0 3.6 HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1054 1592 - HCM Lane V/C Ratio - 0.151 0.077 - HCM Control Delay (s) - 9 7.5 0 HCM Lane LOS - A A A	Stage 1		-		-	141								
HCM Control Delay, s 9 0 3.6	Stage 2	694	-	(#)	(: +)									
HCM Control Delay, s 9 0 3.6														
HCM Control Delay, s 9 0 3.6 HCM LOS A Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1054 1592 - HCM Lane V/C Ratio - 0.151 0.077 - HCM Control Delay (s) - 9 7.5 0 HCM Lane LOS - A A A	Approach	WB		NB	ALL A	SB	luga.	Fre STE	Tarana a		W. S. S.			STATE OF STREET
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 1054 1592 - HCM Lane V/C Ratio - - 0.151 0.077 - HCM Control Delay (s) - - 9 7.5 0 HCM Lane LOS - - A A	HCM Control Delay, s	9	= 18	0		3.6	1112						us III	V.
Capacity (veh/h) - - 1054 1592 - HCM Lane V/C Ratio - - 0.151 0.077 - HCM Control Delay (s) - - 9 7.5 0 HCM Lane LOS - - A A	HCM LOS	Α												
Capacity (veh/h) - - 1054 1592 - HCM Lane V/C Ratio - - 0.151 0.077 - HCM Control Delay (s) - - 9 7.5 0 HCM Lane LOS - - A A														
Capacity (veh/h) - - 1054 1592 - HCM Lane V/C Ratio - - 0.151 0.077 - HCM Control Delay (s) - - 9 7.5 0 HCM Lane LOS - - A A	Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT		Market	green see		Ne de Pri		HELL IN
HCM Lane V/C Ratio 0.151 0.077 - HCM Control Delay (s) 9 7.5 0 HCM Lane LOS - A A A	Capacity (veh/h)				1054	1592								
HCM Lane LOS A A A	HCM Lane V/C Ratio		-		0.151	0.077	-							
HCM Lane LOS A A A	HCM Control Delay (s))			9	7.5	0							
HCM 95th %tile Q(veh) 0.5 0.3 -	HCM Lane LOS		-	-										
	HCM 95th %tile Q(veh)	A ve	4 -	0.5	0.3								

Intersection	- N-3-8		3100	500		2 3			WE SIX				2013/4/8/20
Int Delay, s/veh	7.8												
Movement	WBL	WBR	NBT	NBR	SBL	SBT			STATE OF	A Francis			
Lane Configurations	N/		Þ			4							
Traffic Vol, veh/h	0	313	56	0	394	80							
Future Vol, veh/h	0	313	56	0	394	80							
Conflicting Peds, #/hr	0	0	0	0	0	0							
Sign Control	Stop	Stop	Free	Free	Free	Free							
RT Channelized		None		None	7.0	None							
Storage Length	0	-	-	-	-								
Veh in Median Storage	e,# 0	-	0			0							
Grade, %	0	-	0	-	-	0							
Peak Hour Factor	90	90	90	90	90	90							
Heavy Vehicles, %	2	2	2	2	2	2							
Mvmt Flow	0	348	62	0	438	89							
Major/Minor	Minor1		Major1	The state of	Major2			1000		010		58.5	
Conflicting Flow All	1027	62	0	0	62	0							AND DESCRIPTION OF
Stage 1	62		ı.		-	-							
Stage 2	965			:	120								
Critical Hdwy	6.42	6.22			4.12								
Critical Hdwy Stg 1	5.42	-	-	-									
Critical Hdwy Stg 2	5.42	-		-									
Follow-up Hdwy	3.518	3.318	-		2.218	(#0)							
Pot Cap-1 Maneuver	260	1003		ш.	1541	-							
Stage 1	961	3.00			(#E	(#)							
Stage 2	370		•	100		1.0							
Platoon blocked, %			-			4.1							
Mov Cap-1 Maneuver	182	1003		-	1541	è							
Mov Cap-2 Maneuver	182	-	-		170								
Stage 1	674		٠,٠	50		٠.							
Stage 2	370	-	-	: :									
Approach	WB	Market 1	NB		SB					4	7-2014		
HCM Control Delay, s	10.5		0		6.9								
HCM LOS	В		- 8		- 7,1-								
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT					SELFRE	15	
Capacity (veh/h)		127	(23)	1003	1541		301						
HCM Lane V/C Ratio		-		0.347									
HCM Control Delay (s)			-		8.3	0							
HCM Lane LOS		190	150	В	Α	A							
HCM 95th %tile Q(veh)		L ISA		1.6	1.2								

Intersection	51 7 14			PKI	44	VEL - NI		de la lac			L. Carlo		Contain 18	
Int Delay, s/veh	8.7													
Movement	WBL	WBR	NBT	NBR	SBL	SBT	NAME OF		THE WO	SEM			AT U	E.8
Lane Configurations	¥		₽			4								
Traffic Vol, veh/h	0	250	4	0	83	7								
Future Vol, veh/h	0	250	4	0	83	7								
Conflicting Peds, #/hr	0	0	0	0	0	0								
Sign Control	Stop	Stop	Free	Free	Free	Free								
RT Channelized	MII -	None		None	-	None								
Storage Length	0	-	-	-	-	-								
Veh in Median Storage	e, # 0	-	0		-	0								
Grade, %	0	-	0	-	-	0								
Peak Hour Factor	90	90	90	90	90	90								
Heavy Vehicles, %	2	2	2	2	2	2								
Mvmt Flow	0	278	4	0	92	8								
Major/Minor	Minor1	A KARES	//ajor1		Major2					172		A STATE		
Conflicting Flow All	196	4	0	0	4	0								
Stage 1	4		-11.		-	140								
Stage 2	192	-	-	-										
Critical Hdwy	6.42	6.22			4.12									
Critical Hdwy Stg 1	5.42	-												
Critical Hdwy Stg 2	5.42		٠.	- 0-		-								
Follow-up Hdwy	3.518	3.318	-	-	2.218) = 3								
Pot Cap-1 Maneuver	793	1080	-	-	1618									
Stage 1	1019	-	-	-	-	9#3								
Stage 2	841	-	- 10-		-									
Platoon blocked, %				, = (4								
Mov Cap-1 Maneuver	748	1080			1618									
Mov Cap-2 Maneuver	748	-	-											
Stage 1	961		-		*									
Stage 2	841	-	-	8:50										
Approach	WB		NB		SB					100		in the second		10
HCM Control Delay, s	9.5		0		6.8	N								
HCM LOS	Α													
Minor Lane/Major Mvn	nt 8	NBT	NBRV	VBLn1	SBL	SBT							61740	V _A S
Capacity (veh/h)		1	74	1080	1618							TES-		
HCM Lane V/C Ratio				0.257		-								
HCM Control Delay (s)				9.5	7.4	0								
HCM Lane LOS				Α	Α	A								
HCM 95th %tile Q(veh)	(*)		1	0.2									
,														

Intersection	Total St			all P				
Int Delay, s/veh	4.8							
Movement	WBL	WBR	NBT	NBR	SBL	SBT	Fold in Marie	THE STATE OF THE S
Lane Configurations	N/A		1→			4		
Traffic Vol, veh/h	0	165	120	0	281	250		
Future Vol, veh/h	0	165	120	0	281	250		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None		None	9, 1	None		
Storage Length	0	-	2	-	7/20	-		
Veh in Median Storage	e, # 0		0			0		
Grade, %	0	-	0	-	-	0		
Peak Hour Factor	90	90	90	90	90	90		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	0	183	133	0	312	278		
Major/Minor	Minor1	1	Major1		Major2		1000	以 · · · · · · · · · · · · · · · · · · ·
Conflicting Flow All	1035	133	0	0	133	0		
Stage 1	133	12						
Stage 2	902							
Critical Hdwy	6.42	6.22		-	4.12			
Critical Hdwy Stg 1	5.42	1.75			: :	-		
Critical Hdwy Stg 2	5.42			-	>.	-		
Follow-up Hdwy	3.518	3.318			2.218	120		
Pot Cap-1 Maneuver	257	916	*		1452	11111		
Stage 1	893	948	828		-	-		
Stage 2	396	140			-			
Platoon blocked, %								
Mov Cap-1 Maneuver	192	916	*	-	1452			
Mov Cap-2 Maneuver	192	-		:=:	:=::			
Stage 1	666			-	A	*		
Stage 2	396		(#0)	-		4		
Approach	WB	0.0	NB	3530	SB	100		
HCM Control Delay, s	9.9		0		4.3			
HCM LOS	Α							
Minor Lane/Major Mvm	it	NBT	NBRW	/BLn1	SBL	SBT	No. of the last	August 2 - 2 Mary Water Call But well and its
Capacity (veh/h)			-	916	1452			
HCM Lane V/C Ratio			-		0.215	_		
HCM Control Delay (s)				9.9	8.2	0		
HCM Lane LOS			-	Α	A	A		
HCM 95th %tile Q(veh)				0.7	0.8	- 2		
,								

Intersection	US THE		in the latest	to vo			(1000)	No the last			33	15/100	198		
Int Delay, s/veh	5.7														
Movement	WBL	WBR	NBT	NBR	SBL	SBT	L. H. STATE		1-15/200	15	369		Say.		
Lane Configurations	N/F					€Î									
Traffic Vol, veh/h	0	128	15	0	42	69									
Future Vol, veh/h	0	128	15	0	42	69									
Conflicting Peds, #/hr	0	0	0	0	0	0									
Sign Control	Stop	Stop	Free	Free	Free	Free									
RT Channelized		None		None		None									
Storage Length	0	-	-	-	-	-									
Veh in Median Storage	e, # 0		0		-	0									
Grade, %	0	-	0	ŭ	2	0									
Peak Hour Factor	90	90	90	90	90	90									
Heavy Vehicles, %	2	2	2	2	2	2									
Mvmt Flow	0	142	17	0	47	77									
Major/Minor	Minor1		Major1	10 July 10	Major2			- Section 1	13,05		NESS		WO H	AL-FRY	ESIGN
Conflicting Flow All	188	17	0	0	17	0		-							
Stage 1	17			ı.											
Stage 2	171	_		-		12									
Critical Hdwy	6.42	6.22	1	- 17	4.12	310									
Critical Hdwy Stg 1	5.42	-	-		-										
Critical Hdwy Stg 2	5.42	-	-												
Follow-up Hdwy	3.518	3.318	7:		2.218	() * (
Pot Cap-1 Maneuver	801	1062			1600										
Stage 1	1006	-			₩)	(36)									
Stage 2	859														
Platoon blocked, %			2	2		-									
Mov Cap-1 Maneuver	776	1062	4	- 2	1600	12									
Mov Cap-2 Maneuver	776	-	<u> </u>	- 1											
Stage 1	975	-		100											
Stage 2	859		*		S#3	(*:									
Approach	WB		NB		SB			72 - IV	WATERS	-	5658	A TELE	S. S.	162	10000
HCM Control Delay, s	8.9		0		2.8										
HCM LOS	Α		,37												
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT	College of		CITE LA	200	255	D-800	T. O. F.		HE INC
Capacity (veh/h)		-		1062		001			3-30						
HCM Lane V/C Ratio				0.134											
HCM Control Delay (s)				8.9	7.3	0									
HCM Lane LOS				Α.	Α.	A									
HCM 95th %tile Q(veh)				0.5	0.1										
				0.0	0.1										

													_
Intersection	TOP BU	S Wes	No.	a hin	ALC:			No.	1000			2 电池	15
Int Delay, s/veh	5.3												
Movement	WBL	WBR	NBT	NBR	SBL	SBT	NEW SET			No.		200	
Lane Configurations	*/		1>			4							
Traffic Vol, veh/h	0	193	120	0	226	168							
Future Vol, veh/h	0	193	120	0	226	168							
Conflicting Peds, #/hr	0	0	0	0	0	0							
Sign Control	Stop	Stop	Free	Free	Free	Free							
RT Channelized	-	None		None	-	None							
Storage Length	0	-	-		_	-							
Veh in Median Storage			0			0							
Grade, %	0	_	0			0							
Peak Hour Factor	90	90	90	90	90	90							
Heavy Vehicles, %	2	2	2	2	2	2							
Mvmt Flow	0	214	133	0	251	187							
manice IVW	U	217	100	J	201	107							
Major/Minas	Minard		Anical	er met.	Male-0			A. S. POLICE					
	Minor1		Major1		Major2				Na telephone	olo			
Conflicting Flow All	822	133	0	0	133	0							
Stage 1	133	-	-		-								
Stage 2	689			-	-	-							
Critical Hdwy	6.42	6.22	-	-	4.12								
Critical Hdwy Stg 1	5.42	121	-	•	-	-							
Critical Hdwy Stg 2	5.42		-	of the	8 6	-							
Follow-up Hdwy	3.518	3.318			2.218								
Pot Cap-1 Maneuver	344	916	-	-	1452								
Stage 1	893		-			-							
Stage 2	498		-	*	-								
Platoon blocked, %			-	(#7		14							
Mov Cap-1 Maneuver	278	916	-	4	1452	-							
Mov Cap-2 Maneuver	278	-		-	-	7							
Stage 1	721	-			-								
Stage 2	498	-	-	-	150								
Approach	WB	JA AG	NB	COLUMN S	SB	46 376		Bagg-	The state of the s	Plant Cont		A AY STA	300
HCM Control Delay, s	10.1		0		4.6								
HCM LOS	В				7.5								
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT			AL PERE	ALIS DEL	TISSON IN	S. Picoli	
Capacity (veh/h)			-		1452					1 11 1		11-1-1	I F
HCM Lane V/C Ratio				0.234									
HCM Control Delay (s)		1 1		10.1	8	0							
HCM Lane LOS			-	В	A	A							
HCM 95th %tile Q(veh)			0.9	0.6								
TOTAL DOLL TOLLO ALL ADIT	,			0.0	0.0	- E							

CITY OF SPARKS, NV COMMUNITY SERVICES DEPARTMENT

To: Mayor and City Council

From: Marilie Smith, Administrative Secretary

Subject: Report of Planning Commission Action

Date: October 8, 2018

RE: <u>PCN18-0005</u> – Consideration of and possible action, for a site approximately 65 acres in size generally located east of Golden Eagle Regional Park and south of Vista Boulevard, Sparks, NV, of requests for:

 DA18-0004 – A Development Agreement pursuant to NRS 278.0201 between the City of Sparks, Foothills at Wingfield, LLC, and Albert D. Seeno Construction Company:

 MPA18-0001 – An amendment to the Comprehensive Plan to change the land use designation from 6.26 acres of Commercial (C), 15.57 acres of Multi-family Residential (MF24), 18.56 acres of High Density Residential (HDR), 8.12 acres of Open Space (OS), 5 acres of Large Lot Residential (LLR), and 11.4 acres of Mixed Use (MU) to approximately 65 acres of Intermediate Density (IDR), and;

RZ18-0001 – Rezoning of the site from A5 (Agriculture) to SF6 (Single-Family – 6,000 sq. ft. lots).

Please see the attached excerpt from the August 2, 2018 Planning Commission meeting transcript.

```
I'm going to ask if Commissioner Carey would elaborate
1
   on why he views this use as incompatible with the
2
   surrounding land uses.
3
            COMMISSIONER CAREY: I think, I've heard
 4
   enough. No, I think, what I'm trying to, trying to get
 5
   at, maybe unsuccessfully, is, you know, I don't feel
7
   it's compatible with the existing uses, because it's
   going to create a greater impact that cannot be
8
   mitigated with the conditions of approval, in my humble
9
   opinion.
10
            MS. MCCORMICK: Thank you.
11
            CHAIRMAN VANDERWELL: Any other comments,
12
   questions?
13
            Okay. I will -- all in favor?
14
             (Commission members said "aye.")
15
            CHAIRMAN VANDERWELL: Opposed?
16
            COMMISSIONER CAREY:
                                  Nay.
1.7
            CHAIRMAN VANDERWELL: Okay. The motion
18
    carries.
19
             Next, we'll move along to PCN18-0005,
20
    consideration and possible action for a site 65 acres,
21
    and a development agreement, Comprehensive Plan and a
22
2.3
    rezoning.
             Okay. Commissioner Carey, on our last, you can
24
    say Commissioner Carey nayed this for == since we're
25
```

1 having it recorded. COMMISSIONER CAREY: Oh, the (indistinct)? 2 CHAIRMAN VANDERWELL: No. 3 COMMISSIONER CAREY: Okay. For the record, 4 this is Commissioner Carey, voting in opposition to the 5 motion that was on the table. 6 CHAIRMAN VANDERWELL: Thank you. 7 MR. CRITTENDEN: Madam Chairman, members of the 8 Planning Commission, Ian Crittenden, Senior Planner. 9 This is, as mentioned, a request for a 10 development agreement, Comprehensive Plan amendment and 11 a rezoning on a site approximately 65 acres in size. 12 The development agreement is primarily there as a way to 13 help make the concurrency findings associated with the 14 development -- or with the -- not the development 15 agreement, but with the Comprehensive Plan amendment and 16 the rezoning, there are concurrency requirements to 17 those. 18 Some background on this site in general. It is 19 an approximately 65-acre site composed of a 60-acre 20 large parcel and then two two-and-a-half-acre smaller 21 parcels. 22 The existing land use, which can be seen here, 23 was approved in 2007. And then the two 24 two-and-a-half-acres to the south, southern part of this 25

were annexed in 2015, and they were rezoned to A-5 at that time.

So the DA was requested by staff in order to address concurrency issues with the Comprehensive Plan amendment and the rezoning request.

The site does not abut City streets because of the BLM property that is in between the City's property here at Vista, and the site here is all BLM, including the area that is on the City park. It doesn't connect to our City infrastructure. And so we had to provide a way to show concurrency that would show how this area is going to be accessed and how necessary services were going to be provided in a concurrent manner to development of this property.

So as you can see in this, this plan, it's showing the existing access to the property here with the red line. So from the intersection of Homerun and Vista, it comes south to the intersection of Homerun and Touchdown and then turns onto an unnamed access road that goes to a City maintenance yard and then continues on and then back onto the property.

The applicant is proposing -- this is oriented to the opposite direction. Give me a second. That's the right orientation. Let's zoom in a little bit.

The applicant is proposing to access via the

Homerun to Touchdown to a new access road which they
would construct to access into the property. All of
those roads are, essentially, private roads, including
the ones that access the City parks. We don't own the
right-of-way on those streets because it is over BLM in
an easement that we have with BLM.

The development agreement helps to allow for many of the concurrency findings to be made.

1.3

Specifically, the development agreement establishes the nature of the use and the improvements that will be made and the timing for said improvements mainly. It sets the number of units in the development to between 420 and 475. It requires documentation from the BLM that the access easement is for the densities described in the development agreement.

So the new alignment, as kind of indicated in the blue, will have to be approved by the BLM as well as the intensity of that access easement for the number of lots.

The development agreement addresses off-site sewer improvements that will have to be made in order for this site to be viable.

It addresses vehicular access improvements, which include an all-weather emergency vehicle access road, which is indicated by this kind of purple thatched

line that goes around what will be future programming
for Golden Eagle Regional Park, on this kind of square
property here. And that will provide emergency access
and also provide an evacuation route for this
development with wildfires in the BLM area.

2.4

2.5

Also, there will be required intersection improvements at the intersection of Vista and Homerun. There will also be intersection improvements at Homerun and Touchdown. And then, obviously, the new road constructed to access the property.

All roadways will be, would be required to be constructed to City of Sparks standards. The development agreement also indicates that all streets and sidewalks will be privately owned and maintained.

The City may take ownership and maintenance over of a portion of the primary access road at a time when this area becomes programmed. We will want to be able to control and maintain the road that accesses this part of our programmed park. And so that's also indicated in the development agreement.

And, also, the development agreement also requires the documentation of estimates for private street maintenance, estimates for cost of private street maintenance be submitted, and the funding mechanism that will be provided to be able to maintain those roads,

prior to any tentative maps being submitted by the applicant.

1.1

We also require that the developer provide pedestrian and bicycle access to Golden Eagle Regional Park, the Golden Eagle Regional Park.

Also, there is a requirement that a minimum 25-foot landscape buffer be maintained to help to mitigate the impacts of Golden Eagle Regional Park, which is a louder and brighter park than most neighborhood parks would be. And that may not be able to be completely mitigated, but what can be used, we are requiring that that be done in that 25-foot landscape buffer.

Staff views that the DA is, the development area is consistent with the Comprehensive Plan as the development agreement obligates that developer to construct private access infrastructure to a site that does not abut public right-of-way.

The development agreement supports and is consistent with the following Comprehensive Plan goals and policies, specifically Policy MG5, that requires that infrastructure facilities and fiscal impacts be addressed, and Policy CF1, which requires that City services be able to be provided at an acceptable level. The development agreement provides for those goals and

1 policies to be met.

2.3

Staff does recommend that the Planning Commission make your recommendation of approval to the City Council for the development agreement.

Moving on to the Comprehensive Plan. Like I said, there are three, three items associated here.

mentioned, was approved in 2007. There are, in the see land use of the commercial land use category, there are 6.26 acres. The MF24, which is multi-family with 24 units per acre minimum, or a maximum of 24 units per acre, is 15.57 units. HDR, which has a minimum density of 24 units per acre, there's 18.56 acres of that. Open Space, there's 8.12 acres. Large Lot Residential, there's five acres. Those are the two lots to the south. And then there is also 11.4 acres of mixed-use.

The applicant is requesting to change all of those land uses to IDR, which is Intermediate Density Residential, which allows 6 to less than 10 units per acre.

Findings associated with the Comprehensive Plan amendment are CP1, which requires conformance with the Regional Plan.

Goal 1.1 of the Regional Plan requires that 99 percent of all residential growth and population growth

1 happen in the TMSAs. This is in the City of Sparks 2 TMSA.

Also, Goal 3.5 of the Regional Plan requires, essentially, concurrency. And this goal of concurrency is accomplished through the development agreement, addresses those concurrency requirements.

Finding CP2 requires that the proposed amendment implementing goals of the Sparks Comprehensive Plan. Again, we cite policy MG5, which requires us to look at infrastructure and fiscal impacts; Policy CF1, which addresses City services; and Goal H2, which addresses the provision of housing and fiscal sustainability.

Goal MG5 requires a fiscal impact analysis.

The applicant did submit a fiscal impact analysis which shows a \$2.8 million positive impact over 20 years.

The development agreement provides for Policy CF1 to be able to be supported in that the provided levels of service can be met.

And then Goal H2. This site does propose to build somewhere between 420 and 475 homes and shows a positive fiscal impact, which supports Goal H2.

Finding CP3 requires compatibility with the surrounding land use. The surrounding land uses are Open Space, Parks and Large Lot Residential. All of

these land uses are compatible with and complementary to proposed Intermediate Density Residential land uses.

2.2

2.5

And Finding CP4 requires proper notice. Public notice was published in the Reno Gazette-Journal on July 20th. And the applicant held a neighborhood meeting on April 4th.

And staff is recommending that the Planning Commission approve the Comp Plan amendment request.

And then, finally, for rezoning. The site is currently zoned A-5. The applicant is requesting the site be rezoned. All three parcels are currently A-5. The applicant is requesting a rezone to SF6. The SF zoning had fewer permitted uses than the A-5 zoning district, however does allow higher density residential.

Finding Z1 requires consistency with the Comp
Plan. If the Planning Commission approves the
Comprehensive Plan amendment, then this would be in -would be consistent. If the Planning Commission does
not approve that, then this would not be consistent and
should be remembered when motions are made.

Finding Z2 requires consistency with the surrounding land uses. As mentioned in the Comp Plan portion, the surrounding uses are Park, Open Space and large lot residential. Single-Family Residential would be a compatible and complementary use of those uses.

And Finding Z3 requires proper notice. Public 1 notice was published in the Reno Gazette-Journal on 2 July 20th. Notice was mailed to all property owners 3 within 2,000 feet. Normal rezoning is 750. But to get 4 to the required minimum of 30 individual property owners, we had to go out to 2,000 feet since most of 6 7 this is owned by the BLM adjacent to this property. Staff is also recommending the Planning 8 Commission make a recommendation to the City Council of 9 approval of this request. 10 That is the end of my presentation. I'd be 11 happy to answer any questions. The applicant is also 12 here, if you would like to talk to him. 13 CHAIRMAN VANDERWELL: All right. Would the 14 applicant like to come up. 15 MR. MIKE RALEY: Good evening. For the record, 16 Mike Raley with Rubicon Design Group, here representing 17 Discovery Builders. Representatives from Discovery 18 Builders are here with me tonight, along with our 19 20 project engineer. I think, Ian's staff report is very thorough 21 and he did a very good overview in his presentation. 22 We're simply here to answer any questions you may have. 23 CHAIRMAN VANDERWELL: Okay. Thank you. 2.4

2.5

Any Commissioners have any questions of the

applicant? 7 Commissioner Fewins. 2 COMMISSIONER FEWINS: Yeah. Commissioner 3 I'd like. Fewins. 4 In the development agreement that's been -- it 5 was talked about, I was a little bit concerned. 6 maybe it's just a statement. East of Golden Eagle 7 Regional Park and then west of this, you're going to 8 have a road. And in the development agreement, there 9 was some going bicycles and pedestrian access to Golden 10 Eagle. And in the development agreement, it says that 11 the master builder shall provide a traffic circulation 12 plan to discourage a (indistinct) regional park. So it 13 gets really busy out there, and then people are probably 14 15 parking on that road? MR. MIKE RALEY: Right. 16 COMMISSIONER FEWINS: What are you kind of 17 visioning on that? 18 MR. MIKE RALEY: That's something that we'll 19 definitely address on the tentative map. But, I think, 20 we -- you know, there's a variety of ways that we could 21 do that through a final design on the subdivision. 22 We're not quite to that stage yet. But, you know, we 23 can look at ways of incorporating landscaping and 24

(indistinct). I'm aware that we've discouraged people

2.5

from parking, making it, essentially, inconvenient for 1 2 them to park there. COMMISSIONER FEWINS: Thank you. 3 CHAIRMAN VANDERWELL: Any other Commissioners 4 have any questions? 5 Okay. Thank you. 6 7 This is a public hearing. I'll open a public hearing. 8 Do we have any requests to speak on this item? 9 MS. SMITH: I do not, Madam. 10 CHAIRMAN VANDERWELL: Okay. Sir? 11 MR. DEAN O'CONNER: I don't know if you need 12 this or not. 13 MS. MELBY: Yeah, leave it. 14 MR. DEAN O'CONNER: Okay. 15 MS. SMITH: Thank you. 16 CHAIRMAN VANDERWELL: And if you'll just state 17 your name and address for the record, please. 18 MR. DEAN O'CONNER: Sure. It's Dean O'Conner. 19 I live at 4313 Black Hills Drive. 20 I had a few questions. But with when I 21 purchased this house, we looked at multiple homes in the 22 area and chose this house, paid significantly more money 23 simply due to the area, on the south side that was open 24 and the views. So one piece that I've had is that when 25

this new buildings, when the buildings go up, that it's 1 going to significantly reduce the value of my home. 2 And on the other side of that, I'm just really 3 concerned about safety and all the traffic that's out. 4 I have young children that actually go from our house 5 around and over to the park. So I just want to make 6 sure that they would still have access that's safe. 7 And, again, back to the traffic, it's just a 8 pretty big concern, given that the way that they 9 designed it. 10 One question I do have, is this area directly 11 south between Black Hills and the development, that will 12 continue to stay open with the BLM? 13 MR. CRITTENDEN: If you could use the map, sir. 14 MR. DEAN O'CONNER: Certainly. Sorry. This 15 area. That will stay open and it will not be developed? 16 CHAIRMAN VANDERWELL: We'll call staff up. 17 We'll have staff address that question as soon as you're 18 19 done with your testimony. MR. DEAN O'CONNER: Okay. No problem. Just 20 the point of reduction in value of our home due to the 21 development and the increased traffic. 22 Thank you. 23 CHAIRMAN VANDERWELL: Thank you. 2.4 Any other requests to speak? 25

Okay. I'll close the public hearing. I'll 1 bring it back to the Commission. 2 Ian, if you could please address his question. 3 MR. CRITTENDEN: Yes. The area that the 4 gentleman requested, that actually is scheduled for 5 future park improvements. And so it would not be 7 developed in terms of housing, but potentially a future flat field is what the -- currently, the Sparks 8 management plan has anticipated for that area. We don't 9 have a timeline on that. We don't have funding lined up 10 for that just yet. But it is the future plan. 11 And that was part of the discussion for the 12 emergency evacuation, or the emergency vehicle access 13 road that kind of wraps around the outside edge of that, 14 is to avoid passing through what would be, hopefully, 15 future programmed park space. 16 MR. DEAN O'CONNER: Thank you. 17 CHAIRMAN VANDERWELL: Thank you. 18 Any Commissioners have any future questions? 19 Okay. I'll entertain a motion. 20 COMMISSIONER FEWINS: Commissioner Fewins. 21 CHAIRMAN VANDERWELL: Commissioner Fewins. 22 23 Thank you. COMMISSIONER FEWINS: For the development 24 agreement, I would propose the development associated 25

with PCN18-005 is consistent with the Sparks 1 Comprehensive Plan and to forward a recommendation of 2 approval to the City Council. 3 COMMISSIONER CAREY: I'll second the motion. 4 CHAIRMAN VANDERWELL: Okay. I have a first and 5 a second. Any discussion? 6 7 Commissioner Carey. 8 COMMISSIONER CAREY: Thank you. I support the -- well, I seconded it. I think that I really like 9 the language in the development agreement with section 10 B, part 4, about the urban interface. I mean this is 11 something to take a look at when we get to the tentative 12 13 map. The wildfire, obviously, is a huge issue, huge 14 concern in this area. I think, one of the things we 15 should maybe take a look at, we're providing the buffer 16 to Golden Eagle; I think, we should take a look at 17 providing a buffer to the public lands to the east. 18 Another concern, you know, looking at the 19 Carson City BLM Field Office Management Plan for the 20 land, there's some significant uses that are out to the 21 east. And, I think, when we get to the tentative map, I 2.2 23 would encourage staff to take a look at restricting access, vehicle and off-road vehicle, to the lands to 24

the east and enforcing that access to the existing

2.5

1	access poi	nt to the south near the you know, near the
2	park.	
3	Tł	nank you, Madam Chair.
4	CH	HAIRMAN VANDERWELL: Any other Commissioners
5	have any co	omments?
6	01	kay. All in favor?
7	((Commission members said "aye.")
8	CI	HAIRMAN VANDERWELL: Any opposed?
9	Th	hank you.
10	Ye	es?
11	CC	OMMISSIONER FEWINS: Madam Chair?
12	CH	HAIRMAN VANDERWELL: Commissioner Fewins.
13	CC	OMMISSIONER FEWINS: For the Comprehensive
14	Plan land	use
15	MS	S. MCCORMICK: Madam Chair, I believe a public
16	hearing is	next.
17	CI	HAIRMAN VANDERWELL: Oh, I apologize. See,
18	when you p	ut it all under one, it's hard.
19	Tì	his is a public hearing item. I'm going to
20	open the p	ublic hearing?
21	Do	o we have any requests to speak?
22	01	kay. With that, I'll close the public hearing
23	and bring	it back to the Commission.
24	Co	ommissioner Fewins.
25	CC	OMMISSIONER FEWINS: Madam Chair, for the

Comprehensive Plan land use amendment request, I move to 1 approve the Comprehensive Plan land use amendment 2 MPA18-001, associated with PCN18-0005, based on findings 3 CP1 through CP4, and the facts supporting these findings as set forth in the staff report. 5 COMMISSIONER BROCK: Commissioner Brock. 6 7 Second. CHAIRMAN VANDERWELL: Okay. I have a first and 8 a second. Any further discussion? 9 Commissioner Carey. 10 COMMISSIONER CAREY: Thank you. Some comments 11 for the record on the proposed comprehensive land use 12 13 change. I can recall, from being on the Parks and Rec 14 Commission, when Golden Eagle Park was being designed, I 15 think, the original intent of the land use that were 16 proposed to be changed in the motion, was to be 17 commercial and residential services to provide, to help 18 19 with Golden Eagle Regional Park. I think that the proposed comprehensive land use change is more 2.0 consistent with the existing land uses in this area. 21 think, single-family is more appropriate considering the 22 important land uses of the federal lands to the east. 23 I'll be supporting the motion. 2.4 CHAIRMAN VANDERWELL: Thank you. Any further 25

1	discussio	on?
2		All in favor?
3		(Commission members said "aye.")
4		CHAIRMAN VANDERWELL: Any opposed?
5		Okay. Thank you. Motion carries.
6		Next, I'll open the public hearing for the
7	rezoning	•
8		Do we have any requests to speak?
9		MS. SMITH: I don't.
10		CHAIRMAN VANDERWELL: Hearing none, I'll close
11	the publ:	ic hearing and bring it back to the Commission.
12		Commissioner Fewins, would you like to? thank
13	you.	
14		COMMISSIONER FEWINS: This is called Turkey, I
15	think.	
16		CHAIRMAN VANDERWELL: Yeah. Just moving it
17	along.	
18		COMMISSIONER FEWINS: Madam Chair, Commissioner
19	Fewins.	
20		For the zoning request, I move to forward a
21	recommen	dation of approval to the City Council for the
22	rezoning	request RZ18-0001, associated with PCN18-0005,
23	based on	findings Z1 through Z3 and the facts supporting
24	these fir	ndings as set forth in the staff report.
25		COMMISSIONER BROCK: Commissioner Brock.

Second. 7 CHAIRMAN VANDERWELL: Okay. I have a first and 2 a second. Any further discussion? 3 Okay. Hearing none, all in favor? 4 (Commission members said "aye.") 5 CHAIRMAN VANDERWELL: Anyone opposed? 6 Thank you. Motion carries. 7 Next, we'll move along to General Business, 8 PCN18-00032, consideration and possible recommendation 9 of approval of a tentative map. 10 MR. CUMMINS: Thank you, Madam Chair, Planning 11 Commissioners. I'm Jonathan Cummins, Assistant Planner. 12 PCN18-0032 is a tentative map request for a 13 39-lot single-family residential subdivision on a site 14 5.38 acres in size in the SF6, Single-Family 1.5 Residential, zoning district. 16 The project's located on the southeast corner 17 of Wedekind and El Rancho outlined in cyan, the bluish. 18 The main access to the subdivision would be off 19 of Garfield to the south of the project. There would be 20 emergency access on the northwest corner, which will be 2.1 gated and used only for emergency vehicles. 2.2 The piece that's on the southernmost part of 23 the project here is currently an easement on the church 2.4 property which sits to the west. The applicant's in 25

Recording Requested by and When Recorded Mail To:

Teresa Gardner, City Clerk City of Sparks 431 Prater Way P.O. Box 857 Sparks, Nevada 89432-0857

The	undersi	ignec	l her	eby aff	irms	that th	is do	cument
subn	nitted fo	or rec	cordi	ng does	not	contain	the p	personal
infoi 2391	mation 3.030.	of	any	person	or	persons	per	N.R.S.
Sign	ature of	Dec	laran	t or Age	 nt		-	

THIS DEVELOPMENT AGREEMENT ("Agreement") is made and entered into this ____ day of ______, 2018, by and between the CITY OF SPARKS, a municipal corporation of the State of Nevada ("City"); THE FOOTHILLS AT WINGFIELD, LLC, a Nevada Limited Liability Company ("Owner"); ALBERT D. SEENO CONSTRUCTION COMPANY, a California Limited Partnership ("Master Developer"). The City and Owner and Master Developer are sometimes individually referred to as a "Party" and collectively as the "Parties."

RECITALS

- A. The City is authorized, pursuant to Chapter 278 of the Nevada Revised Statutes and Title 20 of the Sparks Municipal Code, to enter into development agreements such as this Agreement with persons having a legal or equitable interest in real property in order to establish long-range plans for the development of such property.
- B. Owner has authorized Master Developer to develop the Property legally described by "Exhibit A" (metes and bounds) attached hereto and incorporated herein by reference (the "Property").
- C. The Property currently consists of three (3) parcels that total 65 acres, as shown in "Exhibit B" (graphic depiction) attached hereto and incorporated herein by reference.
- D. Master Developer proposes developing the Property with residential uses as allowed by the Code in effect on the date of this Agreement and the land uses identified in the master plan amendment and zone change amendment described in Case No. PCN18-0005 and the Land Plan attached hereto and incorporated herein by reference as "Exhibit C."
- E. The Parties acknowledge that this Agreement will (i) promote the health, safety and general welfare of the City and its inhabitants, (ii) minimize uncertainty in planning for and

securing orderly development of the Property and surrounding areas, (iii) ensure attainment of the maximum efficient utilization of resources within the City at the least economic cost to its citizens, and (iv) otherwise achieve the goals and purposes for which the laws governing development agreements were enacted.

- F. As a result of the development of the Property, the City will receive needed housing, jobs, sales and other tax revenues and significant increases to its real estate property tax base that meet or exceed the cost of providing public services, facilities and infrastructure to the Property as described in the Fiscal Analysis attached hereto and incorporated herein by reference as "Exhibit D." The City will additionally receive a greater degree of certainty with respect to the timing and orderly development of the Property and City infrastructure by a developer with significant economic resources and experience in the development process.
- G. The Master Developer understands and acknowledges that there are insufficient public facilities and infrastructure available at the Property in order to properly construct, populate, and serve the Property. Subject to the terms and conditions of this Agreement, the Master Developer agrees to provide the necessary improvements to public facilities and infrastructure on the Property and outside the Property as specifically provided for in the Infrastructure Plan attached hereto and incorporated herein by reference as "Exhibit E."
- H. The Master Developer understands and acknowledges that due to the Property's location and characteristics, certain design requirements and development restrictions as stated in this Agreement are appropriate and necessary.
- I. The Owner and Master Developer understand and acknowledge that the Property is located within Impact Fee Service Area Number 1 and that development of the Property is subject to applicable impact fees as determined by the City from time to time.
- J. The Master Developer desires to enter into a development agreement with City pursuant to NRS 278.0201 to obtain reasonable assurances that it may develop the Property in accordance with the terms, conditions and intent of this Agreement. The Master Developer's decision to enter into this Agreement and commence development of the Property is based on expectations of proceeding and the right to proceed with the Property in accordance with this Agreement and any other Applicable Rules.
- K. The Master Developer further acknowledges that this Agreement was made part of the record at the time of its approval by the City Council and that the Master Developer agrees without protest to the requirements, obligations, limitations, and conditions imposed by this Agreement.
- L. The City Council, having determined that the development of the Property in the manner proposed in Exhibits C, D, and E is beneficial to the City, that this Agreement is in conformance with the City's Comprehensive Plan, the Sparks Municipal Code, and state and federal law, and that all other substantive and procedural requirements for approval of this Agreement have been satisfied, and after giving notice as required by relevant law, and

after introducing this agreement by ordinance at a public meeting on
and after a subsequent public hearing to consider the substance of this Agreement on
, found this Agreement to be in the public interest and lawful in all respects,
and approved the execution of this Agreement by the Mayor of the City of Sparks.

NOW, THEREFORE, in consideration of the foregoing recitals, the promises and covenants contained herein and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the Parties hereto agree as follows:

SECTION ONE DEFINITIONS

For all purposes of this Agreement, except as otherwise expressly provided or unless the context otherwise requires, the following terms shall have the following meanings:

"Administrator" means the person holding the position of City Manager of the City of Sparks at any time or his designee.

"Agreement' means this development agreement and at any given time includes all addenda and exhibits incorporated by reference and all amendments which hereafter are duly entered into in accordance with the terms of this Agreement.

"Applicable Rules" means and refers to:

- (a) The provisions of the Code and all other uniformly-applied City rules, policies, regulations, ordinances, laws, general or specific, which were in effect on the Effective Date, including without limitation City ordinances, resolutions, or regulations governing the permitted uses of land, density and standards for design;
- (b) This Agreement; and
- (c) The term "Applicable Rules" does not include:
 - (i) Any ordinances, laws, policies, regulations or procedures adopted by a governmental entity other than City;
 - (ii) Any fee or monetary payment prescribed by City ordinance which is applied to any development or construction subject to the City's jurisdiction; or
 - (iii) Any applicable state or federal law or regulation.

"Building Codes" means the Building Codes and Fire Codes in effect at the time of issuance of a permit for a particular development activity.

"City" means the City of Sparks, together with its successors and assigns.

"City Council" means the Sparks City Council.

"Code" means the Sparks Municipal Code, including all ordinances, rules, regulations, standards, criteria, manuals, appendices, and other references adopted therein.

"Development Parcels" means legally subdivided parcels of land within the Project that are intended to be developed or further subdivided.

"Development Area" means the areas of the Property that the Master Developer expects or plans to develop, as shown in Exhibit B and Exhibit C to this Agreement.

"Effective Date" means the date, on or after the adoption by City of an ordinance approving the execution of this Agreement, and the subsequent execution of this Agreement by the Parties, on which this Agreement is recorded in the Office of the County Recorder of Washoe County. Each party agrees to cooperate as requested by the other party to cause the recordation of this Agreement without delay.

"Entitlement" means any land use approval, including without limitation, any master plan or other zoning approval, annexation, Subdivision Map, tentative map, final map, parcel map, special use permit, permitted land use, density of tentative or final mapped Development Parcels, building permit, grading permit, and other land use entitlements or permits, issued for the Project or any portion of the Property or in favor of Master Developer or its successor(s) in connection with the development of the Property.

"Entitlement Request" means a request by Master Developer or its authorized designee for any land use approval for development of the Project in accordance with this Agreement, including, without limitation, parcel map, tentative subdivision map or final subdivision map, and including the annexation, master plan amendment, and zoning amendment contemplated by this Agreement.

"Infrastructure Plan" means a collection of documents that fully describe the public and private infrastructure, on and off the Property, necessary to support the adopted Land Plan and the proposed method(s) of financing construction of the public infrastructure included therein, including, but not limited to, grading plans, drainage studies, sanitary sewer studies, traffic studies, and utility improvement plans.

"Land Plan" means a collection of documents that fully describe the physical characteristics of the Property and the permitted uses of the Property, including, but not limited to, a detailed description and depiction of the permitted uses and associated densities, intensities and locations within the Project; physical characteristics of the Property such as floodplain, slope and soil, Slope Analysis, the availability and accessibility of water that meets applicable health standards and is sufficient in quantity for the reasonably foreseeable needs of the Project, the availability and accessibility of utilities, the availability and accessibility of public services, the availability and accessibility of water and services for fire protection, prevention and containment, and the effect of the Project on existing public streets, attached to this Agreement as Exhibit C.

"Master Developer" means ALBERT D. SEENO CONSTRUCTION COMPANY, a California Limited Partnership, and its successors and assigns as permitted by the terms of this Agreement.

"Nonconforming Entitlement Request" means a request by Master Developer or its authorized designee for any amendment to this Agreement, Land Plan amendment, master plan amendment, or zoning amendment, or an application for a Subdivision Map which, when evaluated in conjunction with all existing Entitlements and potential future development in the Project, proposes a total number of units which will result in the Project having less than the minimum or more than the maximum number of permitted units set forth in Section 3.1 at Project build out.

"Owner" means FOOTHILLS AT WINGFIELD, LLC, a Nevada Limited Liability Company, the entity that holds title to the real property described by Exhibit A, and its successors and assigns as permitted by the terms of this Agreement.

"Party," when used in the singular form, means either Owner, Master Developer, or City, and in the plural form of "Parties" means Master Developer, Owner, and City.

"Project" means the Property and any and all improvements provided for or constructed thereupon.

"Project Entrance" means the intersection of Touchdown Drive and the street providing primary access to the Project.

"Property" means that certain 65 gross acres of real property that are the subject of this Agreement as described in Exhibit A.

"Subdivision Map" means any instrument under the Nevada Revised Statutes and the Code that legally subdivides property or gives the right to legally subdivide property.

"Term" means the temporal duration of this Agreement.

SECTION TWO APPLICABLE RULES AND CONFLICTING LAWS

2.1 Reliance on the Applicable Rules

City and Master Developer agree that Master Developer will be permitted to carry out and complete the development of the Project in accordance with the terms of this Agreement, the Land Plan, the Infrastructure Plan, and the Applicable Rules. The terms of this Agreement shall supersede any conflicting provision of the Code except as provided in Section 2.2 below.

2.2 Application of Subsequently Enacted Rules by the City

The City shall not amend, alter or change any Applicable Rule as applied to the development of the Project, or apply a new fee, rule, regulation, resolution, policy or ordinance to the development of the Project, except as follows:

- (a) The development of the Project shall be subject to the Building Codes and Fire Codes in effect at the time of issuance of the permit for the particular development activity.
- (b) The application of a new uniformly applied rule, regulation, resolution, policy or ordinance to the development of the Project is permitted, provided that such action is necessary to protect the health, safety and welfare of City residents, does not reduce the permitted density or land use types, does not prevent the type of units or number of permitted units in the Project as set forth in this Agreement, and is consistent with the efficient development and preservation of the entire Project.
- (c) Nothing in this Agreement shall preclude the application to the Project of new or changed rules, regulations, policies, resolutions or ordinances specifically mandated and required by changes in state or federal laws or regulations necessary to protect the health, safety and welfare of City residents. In such event, the provisions of Sections 2.4 and 2.5 of this Agreement are applicable.
- (d) Should the City adopt or amend rules, regulations, policies, resolutions or ordinances and apply such rules to the development of the Project, other than pursuant to one of the above Sections 2.2(a), 2.2(b) or 2.2(c), the Master Developer shall have the option, in its sole discretion, of accepting or rejecting such new or amended rules by giving written notice of such acceptance or rejection within 90 days of the application of such new or amended rules to the Project. If accepted, City and the Master Developer shall subsequently execute an amendment to this Agreement evidencing the Master Developer's acceptance of the new or amended ordinance, rule, regulation or policy within a reasonable time. If rejected, the new or amended rules will not apply to the Project. Master Developer's failure to accept or reject new or amended rules within 90 days constitutes acceptance of the new or amended rules for that instance.

2.3 Application of New Fees

Notwithstanding Section 2.2 above, City may increase existing cost-based processing fees, entitlement processing fees, Entitlement Request fees, inspection fees, plan review fees, facility fees, sewer connection fees, effluent fees, and any other fees that uniformly apply to all or similarly situated development in the City.

2.4 Conflicting Federal or State Rules

In the event that any federal or state laws or regulations prevent or preclude compliance by City or Master Developer with one or more provisions of this Agreement or require changes to any approval given by City, this Agreement shall remain in full force and effect as to those provisions not affected, and:

- (a) Notice of Conflict. A Party, upon learning of any such matter, will provide the other Parties with written notice of the conflicting laws or regulations and provide a copy of any such law, rule, regulation or policy together with a statement of how any such matter conflicts with the provisions of this Agreement; and
- (b) Modification Conferences. The Parties shall, within thirty (30) calendar days of the notice referred to in the preceding subsection, meet and confer in good faith and attempt to modify this Agreement to bring it into compliance with any such federal or state law, rule, regulation or policy.

2.5 City Council Hearings

In the event a Party believes that an amendment to this Agreement is necessary due to the effect of any federal or state law, rule, regulation or policy, the proposed amendment shall be scheduled for hearing before the City Council. The City Council shall determine the exact nature of the amendment necessitated by such federal or state law or regulation. Master Developer shall have the right to offer oral and written testimony at the hearing and may support or oppose such change. Any amendment ordered by the City Council pursuant to a hearing contemplated by this Section is subject to judicial review, but such review shall be filed within twenty-five (25) calendar days from the date of the hearing.

SECTION THREE PLANNING AND DEVELOPMENT OF THE PROJECT

3.1 Permitted Uses and Density

Subject to all the terms and conditions of this Agreement, Master Developer agrees to build the Project described by Exhibit C subject to the design standards adopted in the Code and as follows:

- (a) Number of Units Permitted: 420 dwelling units minimum; 475 dwelling units maximum
- (b) Permitted Residential Unit Types: Single Family Detached/Attached
- (c) Gross Density: 7.3 du/acre maximum

3.2 Legal Right to Access the Property

Prior to the approval of any tentative map relating to the Project, Master Developer shall provide evidence to the satisfaction of the Administrator, in the Administrator's sole discretion, that Master Developer and/or Owner is authorized by the Bureau of Land Management (BLM) to cross lands owned and/or managed by BLM for the use of the Property, including the proposed land uses and residential densities for the Project described in this Agreement.

3.3 Required Infrastructure Improvements

Subject to all the terms and conditions of this Agreement, Master Developer agrees to construct all infrastructure necessary to support the Project as described in Exhibit E. Master Developer further agrees to install, at Master Developer's expense, off-site infrastructure necessary to provide services to the Project, including without limitation:

- (a) Sanitary sewer conveyance upgrades that are necessary based on the increased flows resulting from the anticipated land use changes and the topography of the site and surrounding areas.
- (b) Improvements to streets, sidewalks, curbs, and gutters that are necessary based on the increased traffic resulting from the anticipated land use changes in the Project. This includes but is not limited to off-site improvements as follows:
 - Prior to the issuance of any certificate of occupancy for and/or final (i) inspection of any dwelling unit in the Project, all streets from the intersection of Vista Boulevard and Homerun Drive to the Project Entrance shall comply with the 2012 Standard Specifications for Public Works Construction Revision 7. Roadways shall be improved to meet the City of Sparks Standard Residential Street Section to the approval of the City Engineer and the Fire Chief. The roadway construction schedule shall be coordinated with the City's Parks and Recreation Department and Community Services Department. To maintain public access to Golden Eagle Regional Park for the duration of all construction of the Project, Master Developer shall be responsible for all damages caused by Master Developer's activities to all streets, sidewalks, curbs, gutters, and other improvements from the intersection of Vista Boulevard and Homerun Drive to the Project Entrance, and shall repair all such damages to the approval of the City Engineer. Any repairs or maintenance made necessary or prudent due in whole or in part to Master Developer's activities concerning the Project shall be made within 24 hours of notice by telephone call to Master Developer or Master Developer's general contractor, as applicable, unless another time for repairs is agreed upon by the City. If repairs or maintenance are not timely completed, City may cause such repairs or maintenance to be completed at Master Developer's cost and expense.
 - (ii) Prior to the issuance of any certificate of occupancy for and/or final inspection of any dwelling unit in excess of seventy-five (75) dwelling units in the Project, the intersection of Vista Boulevard, Homerun Drive, and Scorpius Drive shall be improved to include one exclusive left turn lane, one shared left turn-through lane, and one exclusive right turn lane at the south approach. The existing right turn lane at the west approach of the intersection of Vista Boulevard, Homerun Drive, and Scorpius Drive shall be lengthened to provide a minimum of 465 feet of storage/deceleration length with a 180-foot taper. The intersection improvements shall comply with the 2012 Standard Specifications for Public Works Construction Revision 7. The pavement structural section (asphalt and base) shall be

- approved by the City Engineer. The roadway construction schedule shall be coordinated with the City's Parks and Recreation Department and Community Services Department.
- (iii) Prior to the issuance of any certificate of occupancy for and/or final inspection of any dwelling unit in the Project, traffic control at the intersection of Homerun Drive and Touchdown Drive shall be modified to include stop sign control at the south and east approaches while the left turn and through movements at the north approach flow freely. This intersection shall also be improved with an exclusive left turn lane at the north approach. Pavement markings and signage shall be installed to the approval of the City Engineer. The installation schedule shall be coordinated with the City's Parks and Recreation Department and Community Services Department.
- (iv) Prior to the issuance of any certificate of occupancy for and/or final inspection of any dwelling unit in the Project, the intersection of Touchdown Drive and the primary access to the Project shall be a three-leg intersection with stop sign control at the east approach and an exclusive left turn lane at the north approach. The north and south approaches shall flow freely. The installation schedule shall be coordinated with the City's Parks and Recreation Department and Community Services Department.
- The primary access to the Project and all internal streets and sidewalks shall (v) be designed to City of Sparks standards. The primary access to the Project shall be privately maintained until such time as the City, in its sole discretion, accepts ownership and/or maintenance responsibilities for such primary access. The Parties acknowledge and agree that nothing contained in this Agreement constitutes in any way a pre-approval, authorization, or acceptance of dedication or any ownership or maintenance responsibility for any street, sidewalk, or other infrastructure. All internal residential streets and sidewalks shall be privately owned and maintained. Prior to the approval of any tentative map relating to the Project, Master Developer shall provide to the City a copy of a report estimating the costs to maintain, repair, replace, or restore all privately owned streets and sidewalks serving or located within the Project for a period of at least thirty (30) years. The report shall include, without limitation, an estimate of the total annual assessment that may be necessary to cover the cost of maintaining, repairing, replacing, or restoring the privately owned streets and sidewalks and an estimate of the funding plan that may be necessary to provide adequate funding. The City may refuse to approve a tentative map if the report does not comply with Nevada law pertaining to reserve studies. The report must be completed by a person who holds a permit issued pursuant to NRS Chapter 116A.
- (vi) The Master Developer shall provide a traffic circulation plan that discourages or prevents Golden Eagle Regional Park traffic from utilizing

the primary access to the Project and internal residential streets. Access to the City of Sparks maintenance facility must be considered and accommodated within any traffic circulation plan and street design. Master Developer and Owner shall not obstruct ingress or egress to Golden Eagle Regional Park at any time.

- (vii) Master Developer shall provide pedestrian and bicycle access routes from the Project to the existing pedestrian and bicycle network within Golden Eagle Regional Park. The locations and design requirements for such pedestrian and bicycle access routes shall be established with an application for the applicable tentative map.
- (c) Flood control and drainage improvements that are necessary based on the anticipated land use changes in the Project. Master Developer shall design and construct all flood control and drainage improvements, whether onsite or off-site, required to comply with the Truckee Meadows Regional Drainage Manual and the approval of the Administrator. Design rainfall depths shall utilize the 24-hour point precipitation frequency estimates from the National Oceanic and Atmospheric Administration Atlas 14 (NOAA Atlas 14). Master Developer shall obtain and provide to the Administrator a copy of any required Federal Emergency Management Agency (FEMA) Conditional Letter of Map Revision or other documentation prior to the approval of any tentative map for the Project. Master Developer shall obtain and provide to the Administrator a copy of any required FEMA Letter of Map Revision or other documentation prior to the issuance of any certificate of occupancy for and/or final inspection of any dwelling unit in the Project.
- (d) Public safety conditions and improvements that are necessary based on the anticipated land use changes in the Project, including, without limitation:
 - (i) A second fire apparatus access road shall be completed to the approval of the City Engineer and the Fire Chief prior to the storage of any combustible materials on the Property. The second fire apparatus access road shall be an all-weather material with a minimum width of twenty (20) feet, shall be located outside the 100-year flood plain, and shall be private, gated, and secured and posted as a second fire apparatus access road to the approval of the City Engineer and the Fire Chief. The Parties acknowledge and agree that it may be necessary or desirable for Master Developer and/or Owner to acquire an easement or purchase real property from the City to accommodate the second fire apparatus access road. The Parties further acknowledge and agree that in such an event, the City may, in its sole discretion, accept or reject the proposed location of such real property, and the purchase price of such interest in real property will be determined by an appraisal and a review appraisal obtained at Master Developer's sole cost and expense. Master Developer shall repair or replace any improvements that are damaged or removed in the course of constructing the second fire

apparatus access road to the approval of the City Engineer. The Parties further acknowledge and agree that nothing contained in this Agreement constitutes in any way a pre-approval or authorization of any purchase, sale, or other transfer of ownership of or other interest in real property.

- (ii) Prior to storage of any combustible materials on the Property, fire hydrants shall be installed throughout the Property to the approval of the Fire Chief.
- (iii) Construction of all streets shall comply with design requirements set forth in the City of Sparks Site Development Fire Prevention Policy Guide and shall be to the approval of the City Engineer and the Fire Chief.
- (iv) Prior to the approval of any tentative map relating to the Project, Master Developer shall create and submit a Fire Protection Plan to the Fire Chief for review and approval in accordance with the then current edition of the International Wildland Urban Interface Code. The Fire Protection Plan must contain provisions for defensible space around the perimeter of the Project, which may include, without limitation, the entity responsible for maintaining defensible space acquiring an easement or other permission to enter upon land north of the Property for the purpose of weed abatement to maintain defensible space on the northern boundary of the Property.
- (e) Master Developer shall establish an open space buffer of no less than twenty-five (25) feet in width to accommodate a combination of evergreen and deciduous trees and shrubs along the western boundary of the Property. Landscaping shall be installed and maintained within this buffer for the screening of the lights and noises generated at Golden Eagle Regional Park to the approval of the Administrator. With the recordation of each final subdivision map, the Master Developer shall convey the lands designated as open space to the entity responsible for maintaining the lands designated as open space.
- (f) All infrastructure, whether onsite or off-site, shall be constructed in substantial conformance with:
 - Applicable construction standards;
 - (ii) Design standards required for dedication to the City of Sparks, if applicable; and
 - (iii) Approval of the Administrator.

3.4 Fiscal Analysis Revision

Prior to submitting any Nonconforming Entitlement Request for consideration, Master Developer agrees to update the comprehensive Fiscal Analysis of the Project attached hereto as Exhibit D to include any new or amended elements of the Project contemplated by the associated

Nonconforming Entitlement Request. Upon approval of the respective Nonconforming Entitlement Request, the updated Fiscal Analysis shall be incorporated into this Agreement as an addendum to Exhibit D. So long as the Project is being developed in accordance with the Land Plan, the Infrastructure Plan, and this Agreement, no revisions or update to the Fiscal Analysis shall be required, including in connection with an Entitlement Request.

3.5 Entitlement Requests

- (a) City shall reasonably cooperate with Master Developer to:
 - (i) Expeditiously process all Entitlement Requests in connection with the Property that are in compliance with the Applicable Rules, Land Plan, and Infrastructure Plan; and
 - (ii) Promptly consider the approval of Entitlement Requests, subject to reasonable conditions not otherwise in conflict with the Applicable Rules, Land Plan, or the Infrastructure Plan.
- (b) Comprehensive Plan Amendment. The Parties acknowledge and agree that the Property's existing and equivalent land use designation in the City's Comprehensive Plan must be amended to allow for the development of the uses and densities provided for herein. Master Developer has submitted a Comprehensive Plan Amendment in accordance herewith as Case No. MPA18-0001 and the terms and conditions of any approval of such application shall be deemed in conformance with and incorporated by reference as part of the Land Plan and Infrastructure Plan.
- (c) Required Zoning Entitlement for Property. The Parties acknowledge and agree that the proper means to legally entitle the Property for eventual development is by rezoning the Property to allow for the development of the uses and densities provided for herein. Master Developer has submitted a proposed zone change in accordance herewith as Case No. RZ18-0001, and the terms and conditions of any approval of such application shall be deemed in conformance with and incorporated by reference as part of the Land Plan and Infrastructure Plan.
- (d) Concurrent Processing of Initial Entitlement Requests. The Parties agree that the most efficient and expeditious manner in which to process the Entitlement Requests described in Section 3.5(b)-(c) is to consolidate final approval of all of the respective Entitlement Requests at a single meeting of the City Council. The City agrees to process the Entitlement Requests described in Section 3.5(b)-(c) concurrently in order to present them to the Sparks Planning Commission and the City Council as a single set. Master Developer agrees to waive any statutory or Code requirements related to limitations of time for processing individual Entitlement Requests in order to facilitate final action on the entitlements described in Section 3.5(b)-(c) at single meetings of the Planning Commission and City Council.

(e) Other Entitlement Requests. Except as provided herein, all other Entitlement Request applications shall be processed by City according to the Applicable Rules. The Parties acknowledge that the procedures for processing such Entitlement Request applications are governed by the Code. In addition, any additional application requirements delineated herein shall be supplemental and in addition to such Code requirements. The Parties acknowledge and agree that nothing contained in this Agreement constitutes in any way a pre-approval or authorization of any Entitlement Request.

3.6 Modification or Amendment of the Agreement

This Agreement may not be modified or amended, except by the mutual written agreement of the Parties.

3.7 Deviation from Design Standards

Any request for variance or deviation from a particular requirement of the Code for a particular Development Parcel or lot shall be processed and considered according to the requirements of the Code in effect on the Effective Date, unless otherwise agreed to by Master Developer.

3.8 Anti-Moratorium

The Parties agree that no moratorium or future ordinance, resolution or other land use rule or regulation imposing a limitation on the construction, rate, timing or sequencing of the development of property, including those that affect parcel or subdivision maps, building permits, occupancy permits or other entitlements to use or develop land that are issued or granted by City shall apply to the development of the Project or any portion thereof. Notwithstanding the foregoing, City may adopt ordinances, resolutions or rules or regulations that are necessary to:

- (a) Comply with any state or federal laws or regulations as provided by Section 2.4, above;
- (b) Alleviate or otherwise contain a legitimate, bona fide harmful and/or noxious use of the Property, in which event the ordinance shall contain the most minimal and least intrusive alternative possible, and shall not, in any event, be imposed arbitrarily; or
- (c) Maintain City's compliance with federal and state sewerage, storm water conveyance, storm water discharge, water system, and utility regulations and permits. The Parties acknowledge and agree that nothing contained in this Agreement constitutes in any way a reservation of sanitary sewer capacity.

3.9 Property Dedications to City

Except as provided herein, any real property (and fixtures thereupon) transferred or dedicated to City or any other public entity shall be free and clear of any mortgages, deeds of trust, liens or other encumbrances.

3.10 Inclusion of Additional Property

The City Council will consider the inclusion of additional property ("Additional Parcels") in the Project by formal amendment of this Agreement provided that:

- (a) Each Additional Parcel is contiguous to some portion of the Property or immediately across the street;
- (b) Development of each Additional Parcel must conform to this Agreement; and
- (c) Master Developer obtains the necessary annexation, zoning, and land use approvals and approval of all necessary technical studies for each Additional Parcel. In no event shall this Agreement be amended to include Additional Parcels without contemporaneously amending Exhibits A through E to reflect the proposed expansion of the Project.

The Parties agree that nothing contained in this Agreement constitutes in any way a pre-approval or authorization of the inclusion of Additional Parcels in the Project.

3.11 Special Improvement District

City agrees to consider and, if appropriate, process and facilitate, with due diligence, any applications made by Master Developer for the creation of a special improvement district. The Parties agree that nothing contained in this Agreement constitutes in any way a pre-approval or authorization of any such special improvement district, and any application to create a special improvement district must be processed and approved in accordance with state law and the Applicable Rules.

SECTION FOUR REVIEW OF DEVELOPMENT

4.1 Frequency of Review

At City's request, Master Developer shall appear before the City Council to review the Master Developer's compliance with the terms of this Agreement pursuant to NRS 278.0205. The Parties agree that the first review shall occur no later than twelve (12) months after the Effective Date of this Agreement, and Master Developer shall provide an updated report every twenty-four (24) months on the anniversary date of that first review thereafter, or as otherwise requested by City upon thirty (30) days' written notice to Master Developer. For any such review, Master Developer shall provide, and City shall review, a report submitted by Master Developer documenting the extent of Master Developer's and City's material compliance with the terms of this Agreement

during the preceding reporting period. The report shall contain information regarding the progress of development within the Project, including, without limitation:

- (a) Data showing the total number of units built and approved on the date of the report;
- (b) Specific densities within each subdivision and within the Project as a whole; and
- (c) The status of development within the Project and the anticipated phases of development for the next calendar year.

In the event Master Developer fails to submit such a report within thirty (30) days following written notice from City that the deadline for such a report has passed, Master Developer shall be in default of this provision and City shall prepare such a report and conduct the required review in such form and manner as City may determine in its sole discretion. City shall charge Master Developer for its reasonable expenses, fees, and costs incurred in conducting such review and preparing such report. If at the time of review an issue not previously identified in writing is required to be addressed, the review may, at the request of either Party, be continued to afford reasonable time for response.

4.2 Opportunity to be Heard

The report required by this Section shall be considered solely by the City Council. Master Developer shall be permitted an opportunity to be heard orally and in writing before the City Council regarding performance of the Parties under this Agreement.

4.3 Action by the City Council

At the conclusion of the public hearing on the review, the City Council may take any action permitted by NRS 278.0205, NRS 278.02053, and/or this Agreement.

SECTION FIVE DEFAULT

5.1 Material Default; Opportunity to Cure

In the event of any material default of any provision of this Agreement, the Party alleging such noncompliance shall deliver to the other by certified mail a ten (10) day notice of default and opportunity to cure. The time of notice shall be measured from the date of receipt of the certified mailing. The notice of noncompliance shall specify the nature of the alleged noncompliance and the manner in which it may be satisfactorily corrected, during which ten (10) day period the party alleged to be in noncompliance shall not be considered in default for the purposes of termination or institution of legal proceedings.

If the material default cannot reasonably be cured within the ten (10) day cure period, the defaulting Party may timely cure the material default for purposes of this Section if it commences

the appropriate remedial action within the ten (10) day cure period and thereafter diligently prosecutes such action to completion within a period of time acceptable to the non-breaching Party. If no agreement between the Parties is reached regarding the appropriate timeframe for remedial action, the cure period shall not be longer than ninety (90) days from the date on which the ten (10) day notice of material default and opportunity to cure was received by the defaulting Party.

If the material default is corrected, then no default shall exist and the noticing Party shall take no further action. If the material default is not corrected within the relevant cure period, the defaulting Party is in default, and the Party alleging material default may elect any one or more of the following courses.

- Amendment or Termination by City. After proper notice and the expiration of the (a) above-referenced period for Master Developer to correct the alleged material default, the City may give notice of intent to amend or terminate this Agreement as authorized by NRS Chapter 278. Following any such notice of intent to amend or terminate, the matter shall be scheduled and noticed as required by law for consideration and review solely by the City Council. Following consideration of the evidence presented before the City Council and a finding that a material default has occurred by Master Developer and remains uncured, City may amend or terminate this Agreement. Termination shall not in any manner rescind, modify, or terminate any Entitlement held in the Project and/or in favor of Master Developer, as determined under the Applicable Rules, existing or received as of the date of the termination. Master Developer shall have twenty-five (25) days after receipt of written notice of termination to institute legal action pursuant to this Section to determine whether a material default existed and whether City was entitled to terminate this Agreement.
- (b) Termination by Master Developer. In the event City materially defaults under this Agreement, Master Developer shall have the right to terminate this Agreement after providing notice and an opportunity to cure as set forth in this Section. Master Developer shall have the option, in its discretion, to maintain this Agreement in effect, and seek to enforce all of City's obligations by pursuing an action for specific performance or other appropriate judicial remedy.

5.2 Force Majeure; Unavoidable Delay; Extension of Time

Neither Party hereunder shall be deemed to be in default, and performance shall be excused, where delays or defaults are caused by war, national disasters, terrorist attacks, insurrection, strikes, walkouts, riots, floods, earthquakes, fires, casualties, third-party lawsuits, or acts of God. If written notice of any such delay is given to one Party or the other within thirty (30) days after the commencement thereof, an automatic extension of time shall be granted coextensive with the period of the enforced delay, or longer as may be required by circumstances or as may be subsequently agreed to between City and Master Developer.

5.3 Limitation on Monetary Damages

The Parties agree that they would not have entered into this Agreement if either were to be liable for monetary damages based upon a breach of this Agreement or any other allegation or cause of action based upon or with respect to this Agreement. Accordingly, the Parties (or their permitted assigns) may pursue any course of action at law or in equity available for breach of contract, except that neither Party shall be liable to the other or to any other person or entity for any monetary damages based upon a breach of this Agreement or any other allegation or cause of action based upon or with respect to this Agreement.

5.4 Venue

Jurisdiction for judicial review under this Agreement shall rest exclusively with the Second Judicial District Court, County of Washoe, State of Nevada or the United States District Court, District of Nevada. If a dispute arises out of or relates to this Agreement, or the breach thereof, and if the dispute cannot be settled through negotiation, unless a Party is seeking injunctive relief, the Parties agree first to try in good faith to settle the dispute by mediation administered by the American Arbitration Association under its Commercial Mediation Procedures before resorting to arbitration, litigation, or some other dispute resolution procedure.

5.5 Waiver

Failure or delay in giving notice of default shall not constitute a waiver of any default. Except as otherwise expressly provided in this Agreement, any failure or delay by any Party in asserting any of its rights or remedies in respect of any default shall not operate as a waiver of any default or any such rights or remedies, or deprive such Party of its right to institute and maintain any actions or proceedings that it may deem necessary to protect, assert, or enforce any of its rights or remedies.

5.6 Applicable Laws; Attorney Fees

This Agreement shall be construed and enforced in accordance with the laws of the State of Nevada. Each Party shall bear its own attorney fees and court costs in connection with any legal proceeding hereunder, and in no event shall any prevailing Party in such a legal proceeding be entitled to an award of attorney fees.

SECTION SIX GENERAL PROVISIONS

6.1 Duration of Agreement

The Term of this Agreement shall commence upon the Effective Date and shall expire on the tenth (10) anniversary of the Effective Date, unless terminated earlier pursuant to the terms hereof. Master Developer shall have the right to request one extension of the Term of this Agreement for an additional five (5) years upon the following conditions:

- (a) Master Developer provides written notice of such extension to City at least one hundred eighty (180) days prior to the expiration of the original Term of this Agreement;
- (b) Master Developer is not in default of this Agreement;
- (c) The City Council finds that an extension is in the best interests of the City; and
- (d) Master Developer and City enter into an amendment to this Agreement memorializing the extension of the Term.

6.2 Expiration of the Agreement

Expiration of the Agreement Term pursuant to Section 6.1 shall not in any manner rescind, modify, or terminate any Entitlement in the Project and/or in favor of Master Developer, as determined under the Applicable Rules, existing or received as of the date of the expiration, and future development of any other portion of the Project not holding such Entitlements shall be subject to all applicable Codes in effect at the time of development. The Parties agree that, in the event of such expiration, the Master Developer shall consent to the City reverting the land use and/or zoning designations on any undeveloped portion of the Property back to the respective land use and/or zoning designations applicable to such undeveloped portion of the Property on the Effective Date of this Agreement.

6.3 Assignment

The Parties acknowledge that the intent of this Agreement is that there is a master developer responsible for all of the obligations in this Agreement throughout the Term of this Agreement. At any time during the Term, Master Developer may sell, assign or transfer all or any portion of its rights, title and interests in the Property, Project (including rights to develop such property in accordance with this Agreement), and this Agreement to any person or entity for development, so long as Master Developer remains, or a successor master developer has assumed through a written assignment and assumption agreement provided to the City, and is obligated and responsible as master developer of the Project for:

- (a) Performance under this Agreement;
- (b) Completion of backbone infrastructure for the Project; and
- (c) Completion of common areas through dedication and acceptance by a common interest community or limited purpose association under NRS Chapter 116.

6.4 Indemnity; Hold Harmless

Except as expressly provided in this Agreement, Master Developer and Owner shall hold City, its officers, agents, employees, and representatives harmless from liability for damage or claims for damage for personal injury including death and claims for property damage which may arise from

the direct or indirect operations of Master Developer and/or Owner or those contractors, subcontractors, agents, employees, or other persons acting on Master Developer's and/or Owner's behalf that relate to the development of the Project. Master Developer and Owner agree to and shall defend City and its officers, agents, employees, and representatives from actions for damages caused or alleged to have been caused by reason of Master Developer's and/or Owner's activities in connection with the development of the Project other than any challenges to the validity of this Agreement or City's approval of related Entitlements. The Parties agree to equally pay all costs and attorney fees for a defense in any legal action filed in a court of competent jurisdiction by a third party alleging any such claims or challenging the validity of this Agreement. The provisions of this Section shall not apply to the extent such damage, liability, or claim is proximately caused by the intentional or negligent act of City, its officers, agents, employees, or representatives. This Section shall survive any termination of this Agreement.

6.5 Binding Effect of Agreement

Subject to this Agreement, the burdens of this Agreement bind, and the benefits of this Agreement inure to, the Parties' respective assigns and successors-in-interest and the Property that is the subject of this Agreement.

6.6 Relationship of Parties

It is understood that the contractual relationship between City and Master Developer is such that Master Developer is not an agent of City for any purpose and City is not an agent of Master Developer for any purpose.

6.7 Counterparts

This Agreement may be executed at different times and in multiple counterparts, each of which shall be deemed an original, but all of which together shall constitute one and the same instrument. Any signature page of this Agreement may be detached from any counterpart without impairing the legal effect to any signatures thereon, and may be attached to another counterpart, identical in form thereto, but having attached to it one or more additional signature pages.

Delivery of a counterpart by facsimile or portable document format (pdf) through electronic mail transmission shall be as binding an execution and delivery of this Agreement by such Party as if the Party had delivered an actual physical original of this Agreement with an ink signature from such Party. Any Party delivering by facsimile or electronic mail transmission shall promptly thereafter deliver an executed counterpart original hereof to the other Party.

6.8 Notices

All notices, demands and correspondence required or provided for under this Agreement shall be in writing. Delivery may be accomplished in person, by certified mail (postage prepaid return receipt requested), or via electronic mail transmission. Mail notices shall be addressed as follows:

To City: City of Sparks

Attention: City Manager

431 Prater Way

Sparks, Nevada 89431

To Owner: Foothills at Wingfield, LLC

4021 Port Chicago Hwy Concord, CA 94520

To Master Developer: Albert D. Seeno Construction Co.

4021 Port Chicago Hwy Concord, CA 94520

Any Party may change its address by giving notice in writing to the others and thereafter notices, demands and other correspondence shall be addressed and transmitted to the new address. Notices given in the manner described shall be deemed delivered on the day of personal delivery or the date delivery of mail is first attempted.

6.9 Entire Agreement

This Agreement constitutes the entire understanding and agreement of the Parties. This Agreement integrates all of the terms and conditions mentioned herein or incidental hereto and supersedes all negotiations or previous agreements between the Parties with respect to all or any part of the subject matter hereof.

6.10 Waiver

All waivers of the provisions of this Agreement shall be in writing and signed by the appropriate officers of Master Developer or approved by the City Council, as the case may be.

6.11 Recording; Amendments

Promptly after execution hereof, an executed original of this Agreement shall be recorded in the Official Records of Washoe County, Nevada. All amendments hereto must be in writing signed by the appropriate officers of City and Master Developer in a form suitable for recordation in the Official Records of Washoe County, Nevada. Upon completion of the performance of this Agreement, a statement evidencing said completion shall be signed by the appropriate officers of the City and Master Developer and shall be recorded in the Official Records of Washoe County, Nevada. A revocation or termination shall be signed by the appropriate officers of the City or Master Developer and shall be recorded in the Official Records of Washoe County, Nevada.

6.12 Headings; Exhibits; Cross References

The recitals, headings and captions used in this Agreement are for convenience and ease of reference only and shall not be used to construe, interpret, expand or limit the terms of this Agreement. All exhibits attached to this Agreement are incorporated herein by the references

contained herein. Any term used in an exhibit hereto shall have the same meaning as in this Agreement unless otherwise defined in such exhibit. All references in this Agreement to sections and exhibits shall be to sections and exhibits to this Agreement, unless otherwise specified.

6.13 Severability of Terms

If any term or other provision of this Agreement is held to be invalid, illegal or incapable of being enforced by any rule of law or public policy, all other conditions and provisions of this Agreement shall nevertheless remain in full force and effect, provided that the invalidity, illegality or unenforceability of such terms does not materially impair the Parties' ability to consummate the transactions contemplated hereby. If any term or other provision is invalid, illegal or incapable of being enforced, the Parties hereto shall, if possible, amend this Agreement so as to affect the original intention of the Parties.

6.14 Exercise of Discretion

Wherever a Party to this Agreement has discretion to make a decision, it shall be required that such discretion be exercised reasonably unless otherwise explicitly provided in the particular instance that such decision may be made in the Party's "sole" or "absolute" discretion or where otherwise allowed by applicable law.

6.15 No Third-Party Beneficiary

This Agreement is intended to be for the exclusive benefit of the Parties hereto and their permitted assignees, if any. No third-party beneficiary to this Agreement is contemplated and none shall be construed or inferred from the terms hereof. In particular, no person purchasing or acquiring title to land within the Project, residing in the Project, or residing outside the Project shall, as a result of such purchase, acquisition or residence, have any right to enforce any obligation of Master Developer or City nor any right or cause of action for any alleged breach of any obligation hereunder by any Party hereto.

6.16 Gender Neutral

In this Agreement (unless the context requires otherwise), the masculine, feminine and neutral genders and the singular and the plural include one another.

[Signatures on following page]

IN WITNESS WHEREOF, this Agreement has been executed by the Parties on the day and year first above written.

CITY OF SPARKS, a munic corporation of the State of Nevada	cipal THE FOOTHILLS AT WINGFIELD, LLC, a Nevada Limited Liability Company
By: Ron Smith, Mayor	By:
ATTEST:	ALBERT D. SEENO CONSTRUCTION CO., a California Limited Partnership
By: Teresa Gardner, City Clerk	— Co., a Camonna Enniced Faringship
APPROVED AS TO FORM	By.: ALBERT D. SEENO CONSTRUCTION CO., INC., a California
By: Chester H. Adams, City Attorney	Corporation, Managing General Partner
STATE OF)
COUNTY OF) ss.)
This instrument was acknowledge by	ed before me this day of, 2018,
	Notary Public
STATE OF	· · · · · · · · · · · · · · · · · · ·
COUNTY OF) ss.)
This instrument was acknowledge	d before me this day of, 2018,
	Notary Public

CALIFORNIA ALL-PURPOSE ACKNOWLEDGMENT (Civil Code §1189)

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

STATE OF CALIFORNIA)	3S.
COUNTY OF CONTRA COSTA)	, , , , , , , , , , , , , , , , , , ,
appeared, where to be the person(s) whose name and acknowledged to me that he/she/likey	e, Brielle Aiello, a Notary Public, personally no proved to me on the basis of satisfactory re(s) are subscribed to the within instrument executed the same in his/her/their authorized nature(s) on the instrument the person(s), or s) acted, executed the instrument.
BRIELLE AIELLO Commission # 2116425 Notary Public - California Contra Costa County My Comm. Expires Jun 20, 2019	I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct. WITNESS my hand and official seal. Bull Aillo SIGNATURE OF NOTARY
**************************************	DNAL *************
Title or Type of Document:	
Signer(s) are Representing:	
Document Date:	

CALIFORNIA ALL-PURPOSE ACKNOWLEDGMENT (Civil Code §1189)

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

STATE OF CALIFORNIA)	
COUNTY OF CONTRA COSTA)	SS.
 ,	e, Brielle Aiello, a Notary Public, personally
evidence to be the person(s) whose name and acknowledged to me that he/she/they	no proved to me on the basis of satisfactory ne(s) are subscribed to the within instrument executed the same in his/her/their authorized nature(s) on the instrument the person(s), or s) acted, executed the instrument.
BRIELLE AIELLO Commission # 2116425 Notary Public - California Contra Costa County My Comm. Expires Jun 20, 2019	I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct. WITNESS my hand and official seal. Bull All Signature of Notary
**************************************	ONAL ************************************
Title or Type of Document:	
Signer(s) are Representing:	
Document Date:	

EXHIBIT "A" LEGAL DESCRIPTION

APN 084-550-02, 084-550-07, & 084-550-08

Three parcels of land being the same as Parcel D of Parcel Map No. 115, according to the map thereof, filed in the office of the County Recorder of Washoe County, State of Nevada, on November 11, 1974, as File No. 346696, and the Southwest Quarter (SW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) and the Northwest Quarter (NW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) of Southeast Quarter (SE ¼) of Section 18, Township 20 North, Range 21 East, MDM, being more particularly described as follows:

Beginning at the East Quarter corner of said Section 18;

thence along the East boundary of said Section 18 North 00°36'37" East a distance of 1321.50 feet to the Northeast corner of said Parcel D, also being the North 1/16 corner of said Section 18;

thence departing said East boundary and along the North boundary of said Parcel D North 89°21'52" West a distance of 1318.34 feet to the Northwest corner of said Parcel D also being the North-East 1/16 corner of said Section 18;

thence departing said North boundary and along the West boundary of said Parcel D South 00°30'07" West a distance of 1320.71 feet to the Center-East 1/16 corner; thence continuing along said West boundary South 00°29'21" West a distance of 660.27 feet to the Southwest corner of said Parcel D also being the Center-North-Southeast 1/64 corner of said Section 18;

thence departing the boundary of said Parcel D and along the West boundary of said Northwest Quarter (NW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) South 00°29'21" West a distance of 330.14 feet to the Center-South-North-Southeast 1/256 corner;

thence along the West boundary of said Southwest Quarter (SW $\frac{1}{4}$) of Southwest Quarter (SW $\frac{1}{4}$) of Northeast Quarter (NE $\frac{1}{4}$) of Southeast Quarter (SE $\frac{1}{4}$) South 00°29'21" West a distance of 330.14 feet to the South-East 1/16 corner;

thence along the South boundary of said Southwest Quarter (SW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) South 89°17'48" East a distance of 328.41 feet to the Center-West-East-Southeast 1/256 corner; thence along the East boundary of said Southwest Quarter (SW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) North 00°30'47" East a distance of 330.18 feet to the Southwest-Northeast-Southeast 1/256 corner; thence along the East boundary of said Northwest Quarter (NW ¼) of Southwest Quarter (SW ¼) of Northeast Quarter (NE ¼) of Southeast Quarter (SE ¼) North 00°30'47" East a distance of 330.18 feet to a point on the South boundary of said Parcel D, also being the Center-West-Northeast-Southeast 1/256 corner;

thence along the South boundary of said Parcel D South 89°18'48" East a distance of 986.05 feet to the Southeast corner of said Parcel D, also being the North-South 1/64 corner of said Section 18;

thence along the East boundary of said Section 18 North 00°35'06" East a distance of 660.65 feet to the Point of Beginning.

Said parcel contains an area of approximately 64.87 acres.

Basis of Bearings: Identical to those shown on Record of Survey Map 4319, File Number 2964693, recorded December 9, 2003, in the Official Records of Washoe County, Nevada, being Nevada State Plane Coordinate System, West Zone (NAD 93/94).

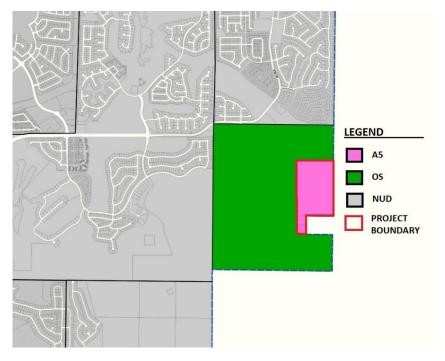
Description Prepared By: Ryan G. Cook, PLS 15224 Summit Engineering Corp. 5405 Mae Anne Avenue Reno, Nevada 89523 (775) 747-8550 ryan@summitnv.com

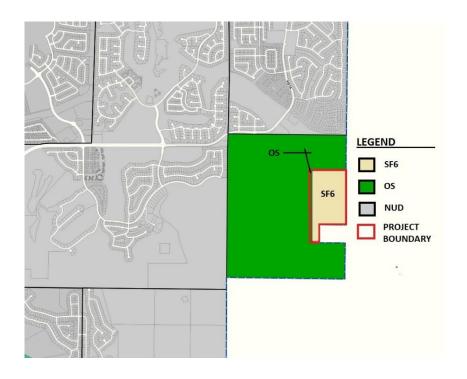
RYAN G.
COOK
PARTICLE COOK
2-20-20/8

CHANGES TO THIS MAP

CHANGES TO THIS MAP EXHIBIT "B" THE CITY OF SPARKS SECTION 18, TZON, RZ1E, MDM RECORD OF SURVEY RECORD DATA PER PARCEL MAP 115 FILE NO. 346696 Record of Survey Map 4319 THE MONUMENTS DEPICTED ON THE PLAT ARE OF THE CHARACTER & OCCUPY THE POSTITIONS INDICATED, AND ARE OF SUFFICIENT DURABL 1). THES IS AN ACCURATE REPRESENTATION OF THE LANDS SURVEYED IN AT THE REQUEST OF THE CITY OF SPARKS. THIS PLAY COMPLES WITH THE APPLICABLE STATE STATUTES AND ANY LOCAL CONTINUEDS IN EFFOT ON THE DATE THAT THE SHINGY WAS CONDUCTED IN ON THE SHINGY WAS CONDUCTED IN COMPLETED, AND THE SHINGY WAS CONDUCTED IN COMPLETED AND THE SHINGY WAS CONDUCTED IN COMPLETED AND THE SHINGY ADMINISTRATINE COMPLETED AND THE SHINGY ADMINISTRATINE COMPLETED. THIS RECORD OF SURVEY IS NOT IN CONFLICT WITH NRS 623,340 AND NO NEW LOTS ARE BEING CREATED. I, DON 14. MEHARO, A PROFESSIONAL LAND SURVEYOR LICENSED IN THE STATE OF NEVADA, CERTIFY THAT: BASIS OF BEARINGS AND COORDINATES: THE LANDS SURVEYED LIE WITHIN A PORTION OF SECTION 18, 120N, RZIE, LIDM, CITY OF SPARKS, WASHOE COUNTY, NEVADA Fd. 1/4 SECTION CORNER AS NOTED TOTAL AREA = 448.16± AC. Fd. SECTION CORNER AS NOTED 7 -8 Fd. MONUMENT AS NOTED 7 -8 18 77 Fd. SECTION CORNER 1 - 18 77 Fd. SURVEYOR'S CERTIFICATE 18/17 7 Fd. 1/4 SECTION CORT (GLO 1320) DATA PER GLO PLAT ON THIS of DAY OF DECEMBER OF SWALM IT ENGINEERS 2003, AT 41 WINUTES PAST [36.48] Fe. 1/2 REBAR W/ TRISTATE CO 1/7 ESTS OF NOTCHED STONE ACCEPTED AS SECTION CORNER WASHOE COUNTY CONTROL, POINT GROUNT CONDINATE. R14891597.22 E2321121.73 Fd. 1/2" REBAR 1.35" NORTH AND 0.5" WEST OF TRUE CORNER Fd. Z BRASS CAP RLS 1004 [1323.74] [47.5551] 5.1551 W "30'85'00 64. 5/8" REBAR RLS 827 0.95" NORTH AND 0.12" EAST PARCEL A P.M. 115 678h PARCEL B PARCEL C P.M. 115 SE 1/4 OF SE 1/4 NE 1/4 OF NE 1/4 [1311.58] Fd. 5/8" REBAR RLS 827 -0.59" NORTH AND 0.22" EAST 2622.85 Fd. 1/2" REBAR —0.55" NORTH AND 0.11 WEST OF TRUE CORNER [1322.09] 00.20.01 E 1250'11 8919'47" W 1315.84 N 89'21'52" W 1318.34 SW 1/4 OF SE 1/4 1/4 OF SE 1/4 SW 1/4 OF NE 1/4 1/4 OF NE 1/4 Fd. 5/8" REBAR RLS 827 AND 16"X7" X4" SCRIBED STONE APN 084-010-38 448.16± AC. S 0023.26" W 1319.80 S 00.53.36 W 1319.92 00.53,36" W 1319.92 S 0023.36 W 1319.80 2964693 COVAIT LOT 2 CONMIT LOT 3 CONNT LOT F4. 2" BRASS CAP PLS 445 AT EAST 1/4 CORNER SEC. 12 Fd. 5/8" REBAR RLS 1797 WITH NOTCHED STONE ALONG SIDE CLOSING SECTION CORNER Fd. 5/8" REBAR LS 1737 N 89'19'45" W ~ 0.59 " FROM TRUE CORNER CARSON RIVER GUIDE MERIDIAN TON R21E T200 R20E

SHOULD BE EXAMINED FOR ANY SUBSEQUENT


PARCEL 1 P.M. 3933


EXISTING COMPREHENSIVE PLAN DESIGNATIONS

PROPOSED COMPREHENSIVE PLAN DESIGNATIONS

EXISTING ZONING

PROPOSED ZONING

June 26, 2018

Mr. Michael Railey Rubicon Design Group, LLC 1610 Montclair Avenue, Suite B Reno, Nevada 89509

Re: Update of Fiscal Impact Analysis of Proposed Wingfield Commons Development

Dear Mr. Railey:

Per your request, I updated the fiscal impact analysis of the proposed Wingfield Commons project originally conducted in February 2018. The update includes the following changes:

- 1. Reduction of single-family residential units from 530 units to 450 units.
- 2. Shortening of development period from 12 years (2018-2029) to seven years (2019-2025) and starting the analysis in 2019 instead of 2018.
- 3. Reduction of length of roads dedicated by the project to the City of Sparks for maintenance from 18,200 linear feet to 5,300 linear feet.

These updates impact both the General and Road Funds considered in the fiscal impact analysis. Table 1 below shows a summary of estimated impacts of Wingfield Commons project on the City of Sparks General Fund from the original February 2018 report and the June 2018 update. The table shows General Fund surplus, over the 20-year analysis period, is expected to increase from \$0.85 million in the original report to \$1.45 million in the June 2018.

This is due to the changes in inflation and buildout periods between the two reports, as well as reduction in the number of residential units. Additionally, the original analysis included a 3% contingency amount estimate, whereas the June 2018 report does not include a contingency cost estimate as this is not an actual cost to the City.

550 West Plumb Lane, Suite B459 Reno, NV 89509 (775) 232-7203 www.ekayconsultants.com

EXHIBIT "D"

Table 1. Comparison of General Fund Impacts

Table 1.	Comparison of	Table 1: Companison of Ceneral Fund Impacts February 2018 Report	pacts				Inne 201	Time 2018 Undate	đ	
		Toron from the	11001				or amo	o puar		
			Annual	Cumulative				•	Annual	Cumulative
	Total Project	Total Project	Revenue	Revenue		Total Project	t Total Project		Revenue	Revenue
Year	Revenue	Costs	Surplus	Surplus	Year	Revenue	Costs		Surplus	Surplus
2018	\$ 2,048	\$ -	3,048	\$ 2,048	2019	\$ 2,048	\$ 8	\$	2,048	\$ 2,048
2019	16,044	5,683	10,362	12,410	2020	22,928		5,683	17,245	19,293
2020	206'09	50,150	10,757	23,166	2021	85,338		58,918	26,420	45,713
2021	135,274	119,173	16,101	39,267	2022	211,341		172,648	38,693	84,405
2022	213,398	187,953	25,445	64,712	2023	343,731		586,666	22,065	141,471
2023	295,430	265,163	30,267	94,978	2024	478,263		407,316	70,947	212,418
2024	381,528	342,233	39,295	134,273	2025	600,139		528,303	71,836	284,254
2025	471,855	428,369	43,486	177,759	2026	684,466		612,467	72,000	356,254
2026	566,579	514,479	52,100	229,859	2027	705,000		630,384	74,616	430,870
2027	665,875	610,335	55,541	285,400	2028	726,150		648,834	77,317	508,187
2028	763,543	706,295	57,248	342,647	2029	747,935		667,831	80,103	588,290
2029	851,405	801,912	49,493	392,140	2030	770,373		687,394	82,979	671,269
2030	899,216	849,580	49,636	441,776	2031	793,484		707,538	85,946	757,215
2031	926,192	874,548	51,644	493,420	2032	817,289		728,281	800'68	846,223
2032	953,978	900,259	53,719	547,139	2033	841,807		749,639	92,168	938,391
2033	982,597	926,733	55,864	603,003	2034	867,061		771,633	95,428	1,033,819
2034	1,012,075	953,995	58,080	661,083	2035	893,073		794,281	98,793	1,132,612
2035	1,042,437	982,067	60,370	721,453	2036	919,865		817,601	102,264	1,234,876
2036	1,073,710	1,010,974	62,737	784,190	2037	947,461		841,614	105,847	1,340,723
2037	1,105,922	1,040,739	65,183	849,373	2038	975,885		866,341	109,544	1,450,267
Total	\$ 12,420,013	\$ 11,570,641 \$	849,373		Total	\$ 12,433,639	89 \$ 10,983,372	,372 \$	1,450,267	

Mr. Michael Railey June 26, 2018 Page 3

Table 2.	Comparison o	Table 2. Comparison of Road Fund Impacts February 2018 Report	acts				Inna 2018 Undate) to	
		i de la companya de l	Annual	Cumulative				Annual	Cumulative
	Total Project	Total Project	Revenue	Revenue		Total Project	Total Project	Revenue	Revenue
Year	Revenue	Costs	Surplus	Surplus	Year	Revenue	Costs	Surplus	Surplus
2018	↔	· ·	· •	⇔	2019	₩		· ·	·
2019			•	•	2020	•	ı	•	•
2020	3,516	- 9	3,516	3,516	2021	3,622	•	3,622	3,622
2021	11,771	71 493,665	(481,895)	(478,378)	2022	17,719	163,145	(145,426)	(141,804)
2022	20,517	7 494,346	(473,828)	(952,207)	2023	32,659	164,156	(131,496)	(273,300)
2023	29,778	494,660	(464,882)	(1,417,089)	2024	48,480	164,184	(115,704)	(389,004)
2024	39,576	782,387	(455,812)	(1,872,901)	2025	65,221	164,213	(98,993)	(487,997)
2025	49,935	15 495,735	(445,800)	(2,318,701)	2026	78,723	164,243	(85,520)	(573,517)
2026	60,879	9 496,512	(435,633)	(2,754,333)	2027	81,085	164,274	(83,189)	(656,706)
2027	72,436	496,894	(424,458)	(3,178,791)	2028	83,518	164,305	(80,787)	(737,493)
2028	84,631	11 497,724	(413,093)	(3,591,884)	2029	86,023	164,336	(78,313)	(815,806)
2029	97,493	13 498,143	(400,650)	(3,992,534)	2030	88,604	164,369	(75,765)	(891,571)
2030	104,356	499,029	(394,673)	(4,387,207)	2031	91,262	164,401	(73,139)	(964,710)
2031	107,486	499,142	(391,656)	(4,778,863)	2032	94,000	164,435	(70,435)	(1,035,145)
2032	110,711	.1 499,257	(388,546)	(5,167,409)	2033	96,820	164,469	(67,649)	(1,102,795)
2033	114,032	499,375	(385,342)	(5,552,751)	2034	99,724	164,504	(64,780)	(1,167,574)
2034	117,453	499,494	(382,041)	(5,934,793)	2035	102,716	164,540	(61,824)	(1,229,398)
2035	120,977	7 499,617	(378,640)	(6,313,433)	2036	105,798	164,576	(58,778)	(1,288,176)
2036	124,606	16 499,741	(375,135)	(6,688,568)	2037	108,972	164,613	(55,642)	(1,343,818)
2037	128,344	499,869	(371,524)	(7,060,092)	2038	112,241	164,651	(52,410)	(1,396,228)
Total	\$ 1,398,496	\$ 8,458,589	\$ (7,060,092)		Total	\$ 1,397,186	\$ 2,793,414 \$	(1,396,228)	

Mr. Michael Railey June 26, 2018 Page 4

Table 2 shows the comparison of the impacts of Wingfield Commons project on the City's Road Fund over the 20-year analysis period. The February 2018 report found a deficit for the Road Fund of \$7.1 million over the 20-year analysis period. Reducing the number of length of streets dedicated to the City for maintenance (June 2018 update) decreases the deficit for the Fund to \$1.4 million.

The developer proposes to dedicate only approximately 5,300 linear feet of streets to the City for maintenance, with the remaining streets proposed to be privately maintained. If all project-related streets are privately maintained, the Road Fund will not incur any additional costs associated with the project, resulting in a Road Fund surplus over the 20-year analysis period of \$1.4 million. This is also expected to reduce some General Fund costs, though the exact reduction is difficult to estimate.

The above analysis shows that the Wingfield Commons project is expected to have a **positive fiscal impact** on the City of Sparks, as the projected General Fund surplus is expected to exceed the estimated deficit in the Road Fund.

Updated Appendices 1-9 of the fiscal impact analysis are attached. No changes to methodology or other inputs (other than discussed above) were made in the June 2018 update. Please see the original February 2018 report for methodology, assumptions, and other information.

Please contact me with any questions or concerns.

Eugema Loemone

Sincerely,

Eugenia Larmore, PhD, MBA, CMA, CVA, MAFF

		Ві	APPENDIX 1 UILDOUT ASSUM			
YEAR	USE TYPE	SQUARE FEET BUILT	# OF UNITS BUILT	ADDED LAND <u>VALUE</u>	ADDED IMPROVEMENTS VALUE	CONSTRUCTION MATERIALS COST
2019	Single Story SF Two Story SF	<u>-</u> _	<u>-</u>	\$ 669,180 669,180	\$ - -	\$ -
Subtotal		-	-	1,338,360	-	-
2020	Single Story SF Two Story SF	21,600 31,200	12 12	2,509,425 2,509,425	1,927,653 2,526,924	963,827 1,263,462
Subtotal		52,800	24	5,018,850	4,454,577	2,227,288
2021	Single Story SF Two Story SF	81,000 117,000	45 45	2,509,425 2,509,425	7,373,273 9,665,482	3,686,637 4,832,741
Subtotal		198,000	90	5,018,850	17,038,756	8,519,378
2022	Single Story SF Two Story SF	81,000 117,000	45 45	2,509,425 2,509,425	7,520,739 9,858,792	3,760,369 4,929,396
Subtotal		198,000	90	5,018,850	17,379,531	8,689,765
2023	Single Story SF Two Story SF	81,000 117,000	45 45	2,509,425 2,509,425	7,671,153 10,055,968	3,835,577 5,027,984
Subtotal		198,000	90	5,018,850	17,727,121	8,863,561
2024	Single Story SF Two Story SF	81,000 117,000	45 45	1,840,245 1,840,245	7,824,576 10,257,087	3,912,288 5,128,544
Subtotal		198,000	90	3,680,490	18,081,664	9,040,832
2025	Single Story SF Two Story SF	59,400 85,800	33 33	<u>-</u>	5,852,783 7,672,301	2,926,392 3,836,151
Subtotal		145,200	66	-	13,525,085	6,762,542
TOTAL		990,000	450	\$ 25,094,250	\$ 88,206,733	\$ 44,103,366

APPENDIX 1, ASSUMPTIONS:

1. The following land and building costs represent the Developer's best estimate in 2018. Analysis adds land value in the year before construction and improvement value in the year of construction.

		Total	Projected Sales	Land Value/	Improv. Value/
	# of Units	Square Feet	Price/Unit	<u>Unit</u>	<u>Unit</u>
Single Story SF	225	405,000	\$ 340,000	\$ 55,765	\$ 154,400
Two Story SF	225	585,000	400,000	55,765	202,400
	450	990,000			

Source: Number of units, square footage, improvement value per unit, and projected sales price from Developer. Land value based on data for homes in nearby developments. Source: Washoe County Assessor's website. Improvement values are inflated 2% annually.

50%

of Building Cost. Source: Discussions with contractors.

^{2.} Construction Materials Cost is estimated at

APPENDIX 2 CITY OF SPARKS ESTIMATED NUMBER OF RESIDENTS

<u>YEAR</u>	USE <u>TYPE</u>	# OF <u>UNITS BUILT</u>	CUMUL. # OF OCCUPIED <u>UNITS</u>	CUMUL. NO. OF <u>RESIDENTS</u>	% OF SPARKS <u>POPULATION</u>
2019	Single Story SF Two Story SF	<u> </u>	<u> </u>	<u>-</u>	0.00% <u>0.00%</u>
Subtotal		-	-	-	0.00%
2020	Single Story SF Two Story SF	12 12	- -	-	0.00% <u>0.00%</u>
Subtotal		24	-	-	0.00%
2021	Single Story SF Two Story SF	45 45	12 12	31 31	0.03% <u>0.03%</u>
Subtotal		90	23	61	0.07%
2022	Single Story SF Two Story SF	45 45	55 55	145 145	0.15% <u>0.15%</u>
Subtotal		90	110	290	0.31%
2023	Single Story SF Two Story SF	45 45	98 98	259 259	0.28% <u>0.28%</u>
Subtotal		90	197	519	0.55%
2024	Single Story SF Two Story SF	45 45	142 142	374 374	0.40% <u>0.40%</u>
Subtotal		90	284	747	0.80%
2025	Single Story SF Two Story SF	33 33	185 185	488 488	0.52% <u>0.52%</u>
Subtotal		66	371	976	1.04%
2026	Single Story SF Two Story SF		217 217	572 572	0.61% 0.61%
Subtotal		-	434	1,144	1.22%
TOTAL		450			

APPENDIX 2, ASSUMPTIONS:

- 1. Number of residential units and square feet of buildings from Appendix 1.
- 2. Occupied single-family units are estimated using a vacancy rate of 3.5% to account for household movement and other timing issues. Households are assumed to be occupied a year after construction. Source: Center for Regional Studies, University of Nevada, Reno, based on data from the American Community Survey.
- 3. Residents are estimated using a ratio of 2.63 residents per occupied household/unit.

 Source: "Comparative Housing Characteristics." 2016 American Community Survey 1-Year Estimates, US Census Bureau. Data for Sparks, NV.
- 4. City of Sparks FY 2016-17 population is estimated at

 This is used to estimate the percent of existing population generated by the project.

 93,581 Source: City of Sparks Budget, FY 2017-18.

APPENDIX 3 CITY OF SPARKS ESTIMATED REAL PROPERTY TAX REVENUE

<u>YEAR</u>	USE <u>TYPE</u>	ADDED TAX. LAND <u>VALUE (\$)</u>	ADDED TAX. IMPROVEMENT VALUE (\$)	CUMULATIVE TOTAL TAX. <u>VALUE (\$)</u>	CUMULATIVE ASSESSED VALUE (\$)	GENERAL FUND <u>REVENUE</u>	AB 104 <u>REVENUE</u>
2019	Single Story SF Two Story SF	\$ 304,180 304,180	\$ -	\$ 304,180 304,180	\$ 106,463 106,463	\$ 1,022 1,022	\$ 2 2
Subtotal		608,360	-	608,360	212,926	2,044	4
2020	Single Story SF Two Story SF	2,144,425 2,144,425	1,811,695 2,410,965	2,457,730 2,457,730	860,206 860,206	8,256 8,256	18 18
Subtotal		4,288,850	4,222,660	4,915,461	1,720,411	16,513	35
2021	Single Story SF Two Story SF	2,509,425 2,509,425	7,373,273 9,665,482	6,906,933 7,524,181	2,417,426 2,633,463	23,202 25,276	49 54
Subtotal		5,018,850	17,038,756	14,431,114	5,050,890	48,478	103
2022	Single Story SF Two Story SF	2,509,425 2,509,425	7,520,739 9,858,792	17,218,037 20,214,779	6,026,313 7,075,173	57,841 67,908	123 144
Subtotal		5,018,850	17,379,531	37,432,816	13,101,486	125,748	267
2023	Single Story SF Two Story SF	2,509,425 2,509,425	7,671,153 10,055,968	27,990,364 33,485,203	9,796,627 11,719,821	94,028 112,487	200 239
Subtotal		5,018,850	17,727,121	61,475,567	21,516,448	206,515	438
2024	Single Story SF Two Story SF	1,840,245 1,840,245	7,824,576 10,257,087	38,571,608 46,687,651	13,500,063 16,340,678	129,574 156,838	275 333
Subtotal		3,680,490	18,081,664	85,259,259	29,840,741	286,411	608
2025	Single Story SF Two Story SF	- -	5,852,783 7,672,301	47,788,070 58,653,080	16,725,825 20,528,578	160,534 197,033	341 418
Subtotal	·	-	13,525,085	106,441,150	37,254,403	357,568	759
2026	Single Story SF Two Story SF	- -	- -	55,250,079 68,315,143	19,337,528 23,910,300	185,602 229,491	394 487
Subtotal		-	-	123,565,222	43,247,828	415,093	881
2027	Single Story SF Two Story SF	-	- -	56,907,581 70,364,597	19,917,653 24,627,609	191,170 236,376	406 502
Subtotal		-	-	127,272,179	44,545,263	427,545	908
2028	Single Story SF Two Story SF	- -	- -	58,614,809 72,475,535	20,515,183 25,366,437	196,905 243,467	418 517
Subtotal		-	-	131,090,344	45,881,620	440,372	935
2029	Single Story SF Two Story SF	- -	- -	60,373,253 74,649,801	21,130,639 26,127,431	202,812 250,771	431 532
Subtotal	·	-	-	135,023,054	47,258,069	453,583	963
2030	Single Story SF Two Story SF	- -	- -	62,184,450 76,889,296	21,764,558 26,911,253	208,896 258,294	443 548
Subtotal		-	-	139,073,746	48,675,811	467,190	992
2031	Single Story SF Two Story SF	-	-	64,049,984 79,195,974	22,417,494 27,718,591	215,163 266,043	457 565
Subtotal		-	-	143,245,958	50,136,085	481,206	1,021
2032	Single Story SF Two Story SF	- -	- -	65,971,484 81,571,854	23,090,019 28,550,149	221,618 274,024	470 582
Subtotal		-		147,543,337	51,640,168	495,642	1,052
2033	Single Story SF Two Story SF	-	- -	67,950,628 84,019,009	23,782,720 29,406,653	228,267 282,245	485 599
Subtotal	J	-	-	151,969,637	53,189,373	510,512	1,084
2034	Single Story SF Two Story SF	-	-	69,989,147 86,539,580	24,496,201 30,288,853	235,115 290,712	499 617
Subtotal		-		156,528,726	54,785,054	525,827	1,116

APPENDIX 3 CITY OF SPARKS ESTIMATED REAL PROPERTY TAX REVENUE

<u>YEAR</u>	USE <u>TYPE</u>	ADDED TAX. LAND <u>VALUE (\$)</u>	ADDED TAX. IMPROVEMENT VALUE (\$)	CUMULATIVE TOTAL TAX. VALUE (\$)	CUMULATIVE ASSESSED VALUE (\$)	GENERAL FUND <u>REVENUE</u>	AB 104 <u>REVENUE</u>
2035	Single Story SF	-	-	72,088,821	25,231,087	242,168	514
	Two Story SF		<u>-</u> _	89,135,767	31,197,518	299,434	636
Subtotal		-	•	161,224,588	56,428,606	541,602	1,150
2036	Single Story SF Two Story SF	- -	- ,	74,251,486 91,809,840	25,988,020 32,133,444	249,433 308,417	529 655
Subtotal		-		166,061,326	58,121,464	557,850	1,184
2037	Single Story SF Two Story SF	-	- -	76,479,030 94,564,135	26,767,661 33,097,447	256,916 317,669	545 674
Subtotal		-		171,043,166	59,865,108	574,585	1,220
2038	Single Story SF Two Story SF	<u>-</u>	- -	78,773,401 97,401,059	27,570,690 34,090,371	264,623 327,199	562 695
Subtotal		-	-	176,174,461	61,661,061	591,823	1,256
TOTAL		\$ 23,634,250	\$ 87,974,816			\$ 7,526,107	\$ 15,976

APPENDIX 3, ASSUMPTIONS:

1. The project is currently located in the City of Sparks, generating property tax revenue for the City. The analysis subtracts existing taxable value of project parcels from amounts estimated in this analysis to arrive at incremental property tax revenue generated by project development. Existing project values are as follows:

Taxable Land

	1	axable Land	1 az	table improv.		
Parcel Number		Value		Value	Acres	
084-550-02	\$	1,290,000	\$	29,148	60.0	
084-550-07		85,000		117,769	2.5	
084-550-08		85,000		85,000	2.5	
	\$	1,460,000	\$	231,917	65.0	Source: Washoe County Assessor's website.

- 2. Taxable value of land and improvements is estimated in Appendix 1.
- 3. Land and improvement taxable values are inflated by 3.0% annually, the maximum allowed increase for owner-occupied properties.
- 4. Property tax calculation: Taxable Value X 35% = Assessed Value; Assessed Value/100 X Tax Rate = Property Tax Revenue.

 Analysis assumes improvements will generate property tax revenue in the year after improvements are made to account for work-in-progress.

 Land values will generate property tax in the year developed.
- 5. City of Sparks General Fund operating tax rate is assumed to remain constant at FY 2017-18 rate of \$ 0.9598 per \$100 of value. Source: City of Sparks Budget, FY 2017-18.
- 6. City of Sparks is expected to receive 7.49% of property tax revenue generated by the AB 104 property tax rate of
- \$ 0.0272 Source: Nevada Department of Taxation. "Local Gov't Tax Act Distribution." Three-year average FY 2014-15, FY 2015-16, and 2016-17.

APPENDIX 4 CITY OF SPARKS ESTIMATED SALES TAX REVENUE

<u>YEAR</u>	USE TYPE	CONSTR. MATERIALS COST	HOUSEHOLD EXPENDITURES	TOTAL TAXABLE <u>SALES</u>	CCRT SALES TAX <u>REVENUE</u>	AB 104 SALES TAX <u>REVENUE</u>
2019	Single Story SF Two Story SF	\$ -	\$ - S	- 5	- 5	- -
Subtotal		-	-	-	-	-
2020	Single Story SF Two Story SF	963,827 1,263,462	-	963,827 1,263,462	2,584 3,387	177 232
Subtotal	,	2,227,288	-	2,227,288	5,970	410
2021	Single Story SF Two Story SF	3,686,637 4,832,741	250,503 253,543	3,937,139 5,086,284	10,554 13,634	724 936
Subtotal	1 wo story si	8,519,378	504,046	9,023,423	24,188	1,660
2022	Single Story SF Two Story SF	3,760,369 4,929,396	1,225,584 1,240,459	4,985,953 6,169,855	13,365 16,539	917 1,135
Subtotal	1 wo story S1	8,689,765	2,466,043	11,155,808	29,904	2,052
2023	Single Story SF Two Story SF	3,835,577 5,027,984	2,258,944 2,286,362	6,094,521 7,314,346	16,337 19,607	1,121 1,346
Subtotal		8,863,561	4,545,306	13,408,867	35,944	2,467
2024	Single Story SF Two Story SF	3,912,288 5,128,544	3,353,204 3,393,902	7,265,492 8,522,446	19,476 22,845	1,337 1,568
Subtotal		9,040,832	6,747,106	15,787,938	42,321	2,905
2025	Single Story SF Two Story SF	2,926,392 3,836,151	4,511,085 4,565,837	7,437,477 8,401,988	19,937 22,522	1,368 1,546
Subtotal		6,762,542	9,076,923	15,839,465	42,459	2,914
2026	Single Story SF Two Story SF	- 	5,445,021 5,511,108	5,445,021 5,511,108	14,596 14,773	1,002 1,014
Subtotal		-	10,956,129	10,956,129	29,369	2,016
2027	Single Story SF Two Story SF	<u> </u>	5,608,372 5,676,441	5,608,372 5,676,441	15,034 15,216	1,032 1,044
Subtotal			11,284,813	11,284,813	30,250	2,076
2028	Single Story SF Two Story SF	<u> </u>	5,776,623 5,846,735	5,776,623 5,846,735	15,485 15,673	1,063 1,076
Subtotal			11,623,358	11,623,358	31,157	2,138
2029	Single Story SF Two Story SF	-	5,949,922 6,022,137	5,949,922 6,022,137	15,949 16,143	1,095 1,108
Subtotal			11,972,058	11,972,058	32,092	2,203
2030	Single Story SF Two Story SF	-	6,128,419 6,202,801	6,128,419 6,202,801	16,428 16,627	1,128 1,141
Subtotal		-	12,331,220	12,331,220	33,055	2,269
2031	Single Story SF Two Story SF	-	6,312,272 6,388,885	6,312,272 6,388,885	16,921 17,126	1,161 1,175
Subtotal		-	12,701,157	12,701,157	34,047	2,337
2032	Single Story SF Two Story SF	-	6,501,640 6,580,551	6,501,640 6,580,551	17,428 17,640	1,196 1,211
Subtotal	·	-	13,082,191	13,082,191	35,068	2,407
2033	Single Story SF Two Story SF	- -	6,696,689 6,777,968	6,696,689 6,777,968	17,951 18,169	1,232 1,247
Subtotal	J	-	13,474,657	13,474,657	36,120	2,479
2034	Single Story SF Two Story SF	-	6,897,590 6,981,307	6,897,590 6,981,307	18,490 18,714	1,269 1,284
Subtotal	·	-	13,878,897	13,878,897	37,204	2,553

APPENDIX 4 CITY OF SPARKS ESTIMATED SALES TAX REVENUE

<u>YEAR</u>	USE <u>TYPE</u>	CONSTR. MATERIALS <u>COST</u>	HOUSEHOLD EXPENDITURES	TOTAL TAXABLE <u>SALES</u>	CCRT SALES TAX <u>REVENUE</u>	AB 104 SALES TAX <u>REVENUE</u>
2035	Single Story SF Two Story SF	<u>-</u>	7,104,518 7,190,746	7,104,518 7,190,746	19,044 19,275	1,307 1,323
Subtotal			14,295,264	14,295,264	38,320	2,630
2036	Single Story SF Two Story SF	<u>-</u>	7,317,653 7,406,468	7,317,653 7,406,468	19,616 19,854	1,346 1,363
Subtotal			14,724,122	14,724,122	39,469	2,709
2037	Single Story SF Two Story SF	<u>-</u>	7,537,183 7,628,662	7,537,183 7,628,662	20,204 20,449	1,387 1,404
Subtotal		-	15,165,845	15,165,845	40,653	2,790
2038	Single Story SF Two Story SF	<u>-</u>	7,763,298 7,857,522	7,763,298 7,857,522	20,810 21,063	1,428 1,446
Subtotal		-	15,620,821	15,620,821	41,873	2,874
TOTAL		\$ 44,103,366	\$ 194,449,953	\$ 238,553,320	\$ 639,463	\$ 43,889

APPENDIX 4, ASSUMPTIONS:

1. Construction Materials Cost is estimated in Appendix 1.

			70 Spent on 1a
	House	hold Income	Items
Single Story SF	\$	69,782	27.5%
Two Story SF	\$	80.813	24.1%

Affordability calculator created by EEC and Center for Regional Studies, UNR. Percent of household income spent on taxable items from Consumer Expenditure Survey, 2016, Bureau of Labor Statistics, data by corresponding household income range. Estimates are inflated 3% annually.

	but vey, 2010, Bureau of Lucof Buttistres, data by corresponding nouse	mora meome range.	Estimates are inflated 570 uniformly.
3.	Relevant tax rates for the City of Sparks are as follows:	0.500%	Basic City County Relief Tax (BCCRT)
		1.750%	Supplemental City County Relief Tax (SCCRT)

0.250% Fair Share (AB 104)
Distribution of BCCRT and SCCRT sales tax revenue to the City of Sparks is calculated a 12.13% of all V

Distribution of BCCRT and SCCRT sales tax revenue to the City of Sparks is calculated a 12.13% of all Washoe County CCRT revenue.

Source: Distribution based on average percentage share of Washoe County C-Tax distribution from FY 2014-15 to FY 2016-17. Data from Nevada

Department of Taxation. "Consolidated Tax Distribution: Revenue Summary by County."

Distribution of AB 104 sales tax revenue to the City of Sparks is calculated at 7.49% of all Washoe County AB 104 revenue.

Source: Distribution based on average percentage share of Washoe County AB104 distribution from FY 2014-15 to FY 2016-17. Data from Nevada

Department of Taxation. "Local Government Tax Act Distribution."

4. A State administrative fee of 1.75% of all sales tax revenue is subtracted for State uses. Source: AB 552.

APPENDIX 5 CITY OF SPARKS ESTIMATED PERMIT AND IMPACT FEE REVENUE	
---	--

	TOTAL	1 1	•	24,096 24,096	48,192	90,360	180,720	90,360 90,360	180,720	90,360 90,360	180,720	90,360	180,720	66,264 66,264	132,528	903,600
		↔		0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	<mark>\$</mark>
E AREA #1	FIRE	 ∻	·	4,080	8,160	15,300 15,300	30,600	15,300 15,300	30,600	15,300 15,300	30,600	15,300 15,300	30,600	11,220	22,440	\$ 153,000
IMPACT FEE SERVICE AREA#1	KEGIONAL PARKS/REC	1 1		9,336	18,672	35,010 35,010	70,020	35,010 35,010	70,020	35,010 35,010	70,020	35,010 35,010	70,020	25,674 25,674	51,348	350,100
IMPACT FI	FLOOD KI			7,116	14,232	26,685 26,685	53,370	26,685 26,685	53,370	26,685 26,685	53,370	26,685 26,685	53,370	19,569	39,138	266,850 \$
	SANITARY F	· ·		3,564 3,564	7,128	13,365 13,365	26,730	13,365 13,365	26,730	13,365 13,365	26,730	13,365 13,365	26,730	9,801	19,602	133,650 \$
ᄀ.	PARK TAX SAF REVENUE SI	↔		12,000	24,000	45,000 45,000	000,06	45,000	000,06	45,000 45,000	000,06	45,000 45,000	000,06	33,000	000,99	450,000 \$
RESID	RE	↔														<mark>∻</mark>
SEWER	CONNECT. REVENUE	· · ·	•	73,296 73,296	146,591	274,859 274,859	549,717	274,859 274,859	549,717	274,859 274,859	549,717	274,859 274,859	549,717	201,563 201,563	403,126	\$ 2,748,587
REGIONAL	ROAD REVENUE	1 1		47,064 47,064	94,127	176,488 176,488	352,976	176,488 176,488	352,976	176,488 176,488	352,976	176,488 176,488	352,976	129,425 129,425	258,849	1,764,882
	PLAN REVIEW REVENUE R	↔		7,040	15,556	26,756 32,404	59,160	27,119	000'09	27,490 33,366	958'09	27,868	61,730	20,719 25,203	45,922	303,224 \$
	PLANNING PLAN <u>REVENUE</u> <u>RE</u>	se		1,680	3,360	6,300	12,600	6,300	12,600	6,300	12,600	6,300	12,600	4,620 4,620	9,240	<mark>63,000 \$</mark>
CUR		↔														
PLAN	REVIEW REVENUE	· ·	•	6,400	14,142	24,324 29,458	53,782	24,654 29,891	54,545	24,991 30,333	55,324	25,335 30,783	56,118	18,836 22,911	41,747	\$ 275,658
BUILDING	PERMIT REVENUE	1 1		15,296 18,504	33,800	58,133 70,405	128,539	58,923 71,440	130,363	59,728 72,496	132,224	60,550	134,122	45,017 54,758	92,776	658,823
	PKINCIPAL AMOUNT 1	↔		16,000 19,356	35,356	60,809	134,455	61,635 74,728	136,363	62,477 75,832	138,309	63,336 76,958	140,295	47,089	104,368	689,145 \$
	BUILDING PR VALUATION A	\$		1,927,653 2,526,924	4,454,577	7,373,273	17,038,756	7,520,739 9,858,792	17,379,531	7,671,153	17,727,121	7,824,576	18,081,664	5,852,783 7,672,301	13,525,085	88,206,733 \$
	USE B	Single Story SF \$ Two Story SF		Single Story SF Two Story SF		Single Story SF Two Story SF		Single Story SF Two Story SF		Single Story SF Two Story SF		Single Story SF Two Story SF		Single Story SF Two Story SF		\$
	YEAR	2019 Sing Tw	Subtotal	2020 Sing Tw	Subtotal	2021 Sing	Subtotal	2022 Sing	Subtotal	EXH	Subjotal	20 <u>2</u> 4.	Sultotal	2025 Sing Tw	Subtotal	TOTAL

APPENDIX 5, ASSUMPTIONS:

- 1. Building valuation is estimated in Appendix 1. It should be noted that permit fees associated with some residential uses are likely underestimated as construction values provided by the Client and used to estimate permit revenues for the project are lower than those provided by the 2012 International Building Code.
 - 2. Principal amount for the calculation of building permit and plan check fee revenue is estimated at follows, principal amount and resulting fees are estimated in the year prior to construction: **5.60** for each additional \$1,000 thereafter through a value of \$500,000. 993.75 for the first \$100,000.01 of Building Permit Valuation, plus
 - Source: "City of Sparks Permit Fees." Revised December 22, 2017. %09'56 33
- Analysis conservatively assumes all single family homes are repeat units. Source: "City of Sparks Permit Fees." Revised December 22, 2017. Revenue for mechanical, plumbing, and electrical permit fees is not estimated as the construction det \$ 140.00 per building, conservatively assuming all units are single family repeats. of principal amount, conservatively assuming all units are single family repeats. of the principal amount. of the principal amount. of principal amount. 22.00% 40.00% 22.00% Current Planning Plan Review fee revenue is estimated at Fire Prevention Plan review fee revenue is estimated at Fire Prevention Inspection fee revenue is estimated at Building Plan Review fee revenue is estimated at Building Permit fee revenue is estimated at
- required for these estimates are unknown.

 4. Regional Road Impact fee (RRIF) revenue is estimated at:

 Single Family \$ 3,921.96 per dwelling unit.

CITY OF SPARKS

ESTIMATED PERMIT AND IMPACT FEE REVENUE

STATION IMPACT FEE SERVICE AREA #1 CONTROL PARKS/REC REGIONAL FLOOD SANITARY SEWER SEWER RESIDENTIAL PARK TAX REVENUE CONNECT. REVENUE CURRENT FIRE INSPEC./ REGIONAL REVENUE ROAD PLANNING PLAN REVIEW REVENUE REVENUE REVENUE REVIEW PLAN BUILDING REVENUE PERMIT PRINCIPAL AMOUNT ESTIMATED BUILDING VALUATION

TOTAL

\$ 6,107.97 per residential unit. Source: "City of Sparks Permit Fees." Revised December 22, 2017. Source: "Regional Road Impact Fee (RRIF)." Regional Transportation Commission. 5th Edition, March 20, 2017. Data for North Service Area.

5. Sewer Connection fee revenue is estimated at

OSE TYPE

YEAR

- 1,544 Single Story SF \$ valuation will result in the following values per unit:
- 2,024 The alternative of \$1,000 per unit is the lesser of the two options and is used in this calculation of residential tax revenue. Source: Sparks Municipal Code 15.12.0040. 7. The Project is located adjacent to the Impact Fees Service Area Number 1. Should the project be added to the Area, the following fees will apply to the project: Two Story SF \$

6. Residential construction tax for neighborhood parks revenue is estimated at the lesser of 1% of building permit valuation or \$1,000 per residential unit. Given an estimated Added Improvements Value shown in Appendix 1, 1% of building perm

Parks/Rec Fire Station Regional Control Flood Sanitary Sewer Unit of Measure

778.00 \$ 340.00

\$ 297.00 \$ 593.00 \$ Single Family Dwelling Source: "City of Sparks Permit Fees." Revised December 22, 2017.

EXHIBIT "D"

Suc
000
S C
ق
E E
엺

				COMPAR	NOSI	OF EST	AI CITY TIMATE	APPENDIX 6 CITY OF SPARKS AATED REVENUE	K 6 (RKS (NUE TO ES	APPENDIX 6 CITY OF SPARKS COMPARISON OF ESTIMATED COSTS	SLSO							
	Base Year FY 16-17	2019		2020	2021	12	2022	- 21	<u>2023</u>	2024	2025	स्य	<u>2026</u>	2027		<u>2028</u>	1ST 10-YEAR SUBTOTAL	AR AL
GENERAL FUND																		
REVENUE																		
Taxes Ad Valorem'	Appendix 3	\$ 2,044	8	16,513	\$ 48	48,478	\$ 125,	125,748 \$	206,515	\$ 286,411	\$ 357,568	\$	415,093	\$ 427,545	.45	440,372	\$ 2,326,287	287
Subtotal		\$ 2,044	44 *	16,513	\$ 48	48,478	\$ 125,	125,748 \$	206,515	\$ 286,411	\$ 357,568	≪	415,093	\$ 427,545	\$ \$ \$	440,372	\$ 2,326,287	287
Licenses and Permits Rusinese Licenses ³	5 878 303	e	Ð		e	217	÷ .	31 106	800	377.73	\$ 5 LL	¥	03 768	06 501	9	00 478	760 577	773
Liquor Licenses ³		· ·	•													4.276		21.044
City Gaming Licenses ²	554,193	1		1				; } '		i Î	, '	à		: ') ! !	Î	
Franchise Fees ³	4,416,852	'		,		3,241	15.	15,858	29,229	43,389	58,371	71	70,455	72,569	69.	74,746	367,859	859
Nonbusiness Licenses and Permits ³	53,249	'				39		191	352	523	7.	704	849	∞	875	901	4,	4,435
Subtotal	\$ 11,155,271	- -	\$		*	7,780	\$ 38,	38,062 \$	70,155	\$ 104,139	\$ 140,098	\$ 86	169,103	\$ 174,176	\$ 92	179,402	\$ 882,915	915
Intergovernmental Revenue																		
Consolidated Tax-CCRT Revenue	Appendix 4	· •	\$	5,970	\$ 24		\$ 29,	29,904 \$		\$ 42,321	\$ 42,459	\$ 65		\$ 30,250	\$ 053	31,157	\$ 271,562	295
Consolidated Tax-Other Revenue	\$ 3,643,715	1		ı	. 1	2,674	13,	13,082	24,113	35,794	48,153	53	58,123	59,866	99;	61,662	303,468	468
State Distributive Fund-Sales Tax ⁴	Appendix 4	1		410		1,660	2	2,052	2,467	2,905	2,914	14	2,016	2,076	9/1	2,138	18,	18,639
State Distributive Fund-Other ⁶	Appendix 3		4	35		103		267	438	809	7.	759	881	6	806	935	4,	4,938
County Gaming Licenses ² Other Interpovernmental Revenue'	389,292	'							ı	•	1			'				
Subtotal	+00,100	' 	<mark>4</mark>	6,415	\$ 78	28,625	\$ 45,	45,306 \$	62,962	\$ 81,627	\$ 94,286	8 8	886,06	\$ 93,100	<mark>*</mark>	- 95,893	598,607	- L09
Charges for Services Building and Zoning Fees ⁷ Onlone	\$ 27,305		∽		∻	1	€	⇔	,	· \$		↔	1	· •	\$	I	-	
Subtotal	2,646,746 \$ 2,674,051	·	\$		\$	1		\$	1	-	·	\$		· S	<mark>*</mark>			.
Fines and Forfeits Fines ³	\$ 619,500	- -	∻		↔	455	\$	2,224 \$	4,100	\$ 6,086	\$ 8,187	\$ 2	9,882	\$ 10,178	.78 \$	10,484	\$ 51,5	51,595
<u>Miscellaneous</u> Miscellaneous ⁷	\$ 153,669	· •	€		€	1		<i>⇔</i>	1	ı ↔	• ••	↔	1	€9	↔	1	. 9	
REVENUE TOTAL		\$ 2.048	\$	22,928	\$	338	\$ 211,341	341 \$	343,731	\$ 478,263	\$ 600,139		684,466	\$ 705,000	\$ 000	726,150	\$ 3,859,405	405
											, ,							

June 2018

Ekay Economic Consultants, Inc.

			2	SIMPARIS	SA BO NO		APPENDIX 6 CITY OF SPARKS	K6 RKS	APPENDIX 6 CITY OF SPARKS COMPARISON OF ESTIMATED COSTS	SLSC							
EXPENDITURES	Base Year <u>FY 16-17</u>	2019	S	<u>2020</u>	2021		2022	2023	2024	2025	<u> </u>	2026	2027		2028	IST 10-YEAR SUBTOTAL	YEAR DTAL
General Government																	
Legislative ⁹	\$ 438,791	· •	S	41 \$	355	↔	1,172 \$	1,991	\$ 2,858	↔	3,727 \$	4,332	& 4,	4,461 \$	4,593	€	23,531
Mayor ⁹	109,556	•		10	68		293	497	714		931	1,082	Τ,	1,114	1,147		5,875
Management Services ⁹	5,966,619	•		555	4,827	_	5,938	27,077	38,864	41	50,684	58,906	90,	60,657	62,459	33	319,966
Legal ⁹	1,617,935	1		151	1,309		4,322	7,342	10,538		13,744	15,973	16	16,448	16,937	~	86,763
Financial Services' Community Services ⁹	3,044,7 <i>57</i> 1,032,879	1 1		283 96	2,463		8,133 2,759	13,817	19,832 6,728	. 4	25,864 8,774	30,060	30	30,953 10,500	31,873 10,812	77	163,278 55,389
General Government Total	\$ 12,210,537	\$	\$	1,136 \$	9,878	\$	32,616 \$	55,412	\$ 79,534	\$ 10	103,723 \$	120,550	\$ 124,	124,133 \$	127,821	\$	654,803
Judicial																	
Judicial ¹⁰	\$ 2,123,457	· ·	8	S	1,558	∽	7,624 \$	14,052	\$ 20,860	\$	28,063 \$	33,872	\$ 34,	34,889 \$	35,935	\$ 17	176,853
Judicial Total	3.	- **	\$	•	1,558		7,624 \$	14,052	\$ 20,860	\$	28,063 \$	33,872	\$ 34,	34,889 \$	35,935	\$ 17	176,853
Public Safety																	
Police Police ¹¹	Appendix 7	∽	€9	<i>\$</i>	22,090	↔	71,012 \$	122,810	\$ 177,610	\$ 23	235,545 \$	282,208	\$ 290,	290,252 \$	298,534	\$ 1,50	1,500,059
<u>Fire</u> Fire ¹²	Appendix 8	ı 6	↔	4,522 \$	22,122	∻	40,775 \$	60,527	\$ 81,427	8	98,285 \$	101,233	\$ 104,	104,270 \$	107,398	8	620,558
Community Services Community Services	\$ 1,277,098	ı ↔	\$	⇔	937	∻	4,585 \$	8,451	\$ 12,545	\$	16,877 \$	20,372	\$ 20,	20,983 \$	21,612	\$ 10	106,364
Public Safety Total		- -	\$	4,522 \$	45,149	\$ 11	116,372 \$	191,788	\$ 271,582	\$ 35	350,707 \$	403,812	\$ 415,	415,505 \$	427,544	\$ 2,22	2,226,981
Public Works																	
Community Services ¹³	\$ 1,480,919	· •	€	· S	ı	\$	4,967 \$	5,116	\$ 5,269	€	5,427 \$	5,590	\$	5,758 \$	5,931	40	38,057
Public Works Total		• •	\$	\$	٠	99	4,967 \$	5,116	\$ 5,269	\$	5,427 \$	5,590	\$	5,758 \$	5,931	\$	38,057
Culture and Recreation																	
Community Services ¹⁰	\$ 2,883,027	- 	÷	·	2,116	÷	10,351 \$	19,079	\$ 28,321	.	38,101 \$	45,989	\$ 47,	47,368 \$	48,789	\$	240,114
Culture and Recreation Total		· ·			2,116	⇔	10,351 \$	19,079	\$ 28,321	8	38,101 \$	45,989	\$ 47,	47,368 \$	48,789	\$ 24	240,114

Wingfield Commons

			Ö	OMPARIS	ON OF EST	AP CITY	APPENDIX 6 CITY OF SPARKS AATED REVENUE	6 RKS NUE TO EST	APPENDIX 6 CITY OF SPARKS COMPARISON OF ESTIMATED REVENUE TO ESTIMATED COSTS	OSTS							
Community Support	Base Year <u>FY 16-17</u>	2019	<u> </u>	2020	2021	2022		2023	2024	%	2025	2026		2027	2028	IST 1	IST 10-YEAR SUBTOTAL
Management Services ⁹	\$ 268,707	· •	S	25 \$	217	· •	718 \$	1,219 \$	1,750	8	2,283 \$	2,653	ee	2,732 \$	3 2,813	æ	14,410
Community Support Total		\$	\$	25 \$	217	<u>`</u>	718 \$	1,219 \$	1,750	\$	2,283 \$	2,653	\$	2,732 \$	3 2,813	*	14,410
EXPENDITURES SUBTOTAL		\$	\$	5,683 \$	58,918	\$ 172,648	648 \$	286,666 \$	407,316	\$	528,303 \$	612,467	\$ 1	630,384 \$	648,834	\$	3,351,218
CONTINGENCY	%0	∽	€	€	•	€	€	€	,	€	\$	•	€	€	1	€	
EXPENDITURES TOTAL		≪	\$	5,683 \$	58,918	\$ 172,648	648 \$	286,666 \$	407,316	\$	528,303 \$	612,467	\$ 1	630,384 \$	648,834		3,351,218
GENERAL FUND SURPLUS/(DEFICIT	(\$ 2,048	8 \$ 1	17,245 \$	26,420	\$ 38,	38,693 \$	\$7,065 \$	70,947	\$	71,836 \$	72,000	<u>\$</u> (74,616 \$	3 77,31	<u> </u>	508,187
ROAD FUND																	•
REVENUE																	
<u>Licenses and Permits</u> Licenses and Permits ^{3,14}	\$ 2.476.550	· ·	€9	<i>\$</i>	1.817	∞	8.892 \$	16.389 \$	24,328	€	32.729 \$	39.505	€9	40.690 \$	3 41.911		206.261
Subtotal			→	%												1 \$	206,261
Intergovernmental Revenues County Gasoline Tax ³ Sent Gasoling Tax ³		· •	€	≶	488	\$ 2,7	2,389 \$	4,402 \$		↔	8,792 \$		es	10,930 \$		∻	55,406
State Gasoline 1 ax Subtotal	1,793,365	· ·	∞	-	1,316	, , , ,	6,439 8,827 \$	11,868 16,270 \$	17,617	∞	23,700 32,492 \$	28,607 39,219	- *	29,465	30,349 \$ 41,607	<u>\$</u>	149,361 204,767
<u>Miscellaneous</u> Interest Earned'	\$ 5,000	· \$	s	⇔		s	⇔	\$,	S	•	1	\$	\$		∻	
Subtotal		⊗	∞	•	·	\$	\$	•	•	\$	\$		9	•	€	\$	•
REVENUE TOTAL		\$	\$	\$	3,622	\$ 17;	\$ 612,71	32,659 \$	48,480	\$	65,221 \$	78,723	\$	81,085 \$	83,518	\$	411,027
EXPENDITURES																	
Public Works ¹⁵	Appendix 9	· •	S	·	1	\$ 163,145	145 \$	164,156 \$	164,184	\$	164,213 \$	164,243	*	164,274 \$	3 164,305	€	1,148,520
EXPENDITURES SUBTOTAL		\$	\$	-	•	\$ 163,145	145 \$	164,156 \$	164,184	\$ 1	164,213 \$	164,243	\$	164,274 \$	3 164,305		1,148,520
CONTINGENCY	%0	ı 9	€	€		9	€	€	,	↔	•	•	€	€	1	€	
EXPENDITURES TOTAL		≪	\$	\$	•	\$ 163,145	145 \$	164,156 \$	164,184	\$ 1	164,213 \$	164,243	\$	164,274 \$	3 164,305	\$	1,148,520
ROAD FUND SURPLUS/(DEFICT)		€	\$	\$	3,622	\$ (145,426)	426) \$	(131,496) \$	(115,704)	\$	<mark>98,993) \$</mark>	(85,520)	\$ (0	(83,189) \$	80,78	<u> </u>	(737,493)

EXHIBIT "D"

Wingfield Commons

				CON	IPARISO	N OF EST	A CITY	APPENDIX 6 CITY OF SPARKS AATED REVENUE	APPENDIX 6 CITY OF SPARKS COMPARISON OF ESTIMATED COSTS	STIMAT	ED COS	IS						
	%	2029	2030	%	2031	2032		2033	2034	2035	ν _ι	2036	2037	<u> </u>	2038	10-YEAR SUBTOTAL	20-Y	20-YEAR TOTAL
GENERAL FUND																		
REVENUE																		
<u>Taxes</u> Ad Valorem'	8 44	\$ 453,583	\$ 467,190	•	481,206 \$, 495,642	↔	510,512 \$	525,827	∻	541,602 \$	557,850	↔	574,585 \$	591,823	\$ 5,199,820	\$ 7,5	7,526,107
Subtotal	\$ 45		\$ 467,190		206	\$ 495,642	↔	510,512 \$	525,827	\$	541,602 \$	557,850	≪	574,585 \$	591,823	\$ 5,199,820		7,526,107
Licenses and Permits Business Licenses ³	\$ 10	\$ 102,463	\$ 105,537	↔	108,703 \$	111,964	€	115,323 \$	118,782	↔	122,346 \$	126,016	↔	\$ 762,791	133,690	\$ 1,174,619	\$ 1,6	1,664,196
Liquor Licenses ³ City Gaming Licenses ²		4,404	4,536		4,672	4,813		4,957	5,106		5,259	5,417		5,579	5,747	50,490		71,534
Franchise Fees ³		- 76,989	- 79,298		81,677	- 84,128		- 86,651	- 89,251		- 91,928	94,686		97,527	100,453	882,588	1,2	1,250,447
Nonbusiness Licenses and Permits3		928	956	5	985	1,014		1,045	1,076		1,108	1,142		1,176	1,211	10,640		15,075
Subtotal	\$ 18	184,784	\$ 190,327	≪	196,037 \$	201,918	\$	\$ 976,702	214,215	€	220,641 \$	227,261	⊗	234,078 \$	241,101	\$ 2,118,338	\$ 3,0	3,001,253
Intergovernmental Revenue Consolidated Tax-CCRT Revenue ⁴	€	32,092	\$ 33,055	8	34,047 \$	35,068	S	36,120 \$	37,204	€9	38,320 \$	39,469	8	40,653 \$	41,873	\$ 367,900	9	639,463
Consolidated Tax-Other Revenue ⁵	-	63,512	65,418		67,380	69,402	7	71,484	73,628	1	75,837	78,112		80,455	82,869	728,097	1,0	1,031,566
State Distributive Fund-Sales Tax ⁺ State Distributive Fund-Other ⁶		2,203	2,269		2,337	2,407		2,479	2,553		2,630	2,709		2,790	2,874	25,251		43,889
County Gaming Licenses ²		8 .			1,021	- 1,007	,	1,001	- '		.,130	1,101,1			1,200	-		
Subtotal	 	- 8 077,86	- \$ 101,733	≪	- 104,785 \$	- 107,929		- 111,166 \$	114,501	∞	-117,936 \$	121,475	\$ 125	- 125,119 \$	128,872	- \$ 1,132,286	\$ 1,7	1,730,894
Charges for Services Building and Zoning Fees ⁷ Other ⁸	↔	1 1	 ∻	↔	\$	1 1	\$	∽		s >	↔	1 1	∽	<i>\$</i> >	1 1	 •÷	€	
Subtotal	\$		· *	\$	-	•	\$	-	٠	€	\$			•		-	\$	•
Fines and Forfeits Fines ³	∞	10,798	\$ 11,122	↔	11,456 \$	11,800	↔	12,154 \$	12,518	∽	12,894 \$	13,281	∽	13,679 \$	14,089	\$ 123,790	↔	175,386
<u>Miscellaneous</u> Miscellaneous ⁷	↔	1	€9	€-	٠		↔	<i>\$</i>	1	⇔	<i>9</i> €	•	∽	€ \$	ı	⇔	s	
REVENUE TOTAL	\$ 74	747,935	\$ 770,373	\$	793,484 \$	817,289	<mark>∻</mark>	841,807 \$	867,061		893,073 \$	919,865	<mark>∻</mark>	947,461 <mark>\$</mark>	975,885	\$ 8,574,234	\$ 12,4	12,433,639

EXHIBIT "D"

Wingfield Commons

								APPE	APPENDIX 6										
				C	OMPARI	SON C	F ESTIN	CITY OF SPARKS 1A TED REVENUE	F SPAR REVEN	KKS IUE TO EST	COMPARISON OF ESTIMATED REVENUE TO ESTIMATED COSTS	SOSTS							
EXPENDITURES	<u> </u>	<u>2029</u>	2030	0 1	2031	₹	<u>2032</u>	2033		2034	2035	<u>₹</u>	<u>2036</u>	2037	73	<u>2038</u>	10-YEAR SUBTOTAL		20-YEAR TOTAL
General Government																			
Legislative ⁹	8	4,730	s 4	4,870 \$	5,015	S	5,164 \$	\$ 5,318	\$ 8	5,476	\$ 5,638	9	5,806 \$	5,978	\$	6,156	\$	54,151 \$	77,682
Mayor ⁹		1,181	1,	1,216	1,252		1,289	1,328	83	1,367	1,408		1,450	1,493		1,537	13	13,520	19,395
Management Services7	•	64,315	. 99	66,226	68,194		70,221	72,308	8	74,456	76,669		78,947	81,293		83,709	736	736,339	1,056,305
Legal Financial Services ⁹	K	17,440 32,820	33	17,958 33.795	18,492 34 800		19,041 35.834	36 898	۲, &	20,190 37 995	39 124		21,408 40,287	22,044		22,699 42,717	199 278	199,669 375,753	539.031
Community Services ⁹	, —	11,134	Ξ΄	11,464	11,805		12,156	12,517	7	12,889	13,272		13,667	14,073		14,491	127	127,467	182,857
General Government Total	\$ 13	131,620	\$ 135,	135,531 \$	139,558	\$ 17	143,705 \$	\$ 147,976	\$ 9/	152,373	\$ 156,901		161,563 \$	166,364	€	171,308	\$ 1,506,899	\$ 668,	2,161,702
Judicial																			
Judicial ¹⁰	& 	37,013	\$ 38,	38,124 \$	39,267	↔	40,445 \$	41,659	\$ 69	42,908	\$ 44,196	↔	45,522 \$	46,887	8	48,294	\$ 424	424,315 \$	601,168
Judicial Total	8	37,013	\$ 38,	38,124 \$	39,267	5	40,445 \$	41,659	\$ 65	42,908	\$ 44,196	⇔	45,522 \$	46,887		48,294	\$ 424	424,315 \$	601,168
Public Safety																			
Police Police ¹¹	\$ 30	307,060	\$ 315,838	\$38 \$	324,874	\$	334,177 \$	343,755	\$ 52	353,615	\$ 363,766	↔	374,216 \$	384,975	↔	396,051	\$ 3,498,327	,327 \$	4,998,387
Fire Fire ¹²	\$ 11	110,620	\$ 113,	113,939 \$	117,357	\$	120,878 \$	\$ 124,504	4	128,239	\$ 132,086	↔	136,049 \$	140,130	↔	144,334	\$ 1,268,137	,137 \$	1,888,695
Community Services Community Services ¹⁰	& 2	22,261	\$ 22,	22,928 \$	23,616	8	24,325 \$	\$ 25,055	\$ \$	25,806	\$ 26,580	€	27,378 \$	28,199	↔	29,045	\$ 255	255,193 \$	361,557
Public Safety Total	\$ 43	439,941	\$ 452,705	\$ 202,	465,847	\$	479,380 \$	\$ 493,313	(3 &	207,660	\$ 522,433	\$	537,643 \$	553,305	⊕	569,431	\$ 5,021,657	\$ LS9,	7,248,638
Public Works																			
Community Services ¹³	8	6,108	\$ 6,	6,292 \$	6,480	\$	6,675 \$	6,875	\$ 5.	7,081	\$ 7,294	⇔	7,513 \$	7,738	8	7,970	9 20	70,026 \$	108,084
Public Works Total	\$	<mark>6,108</mark>	\$ 6,	6,292 \$	6,480	\$	8 229'9	8 6,875	\$ 2/	7,081	\$ 7,294	\$	7,513 \$	7,738	\$	0/6,7	<mark>\$ 70</mark>	70,026 \$	108,084
Culture and Recreation																			
Community Services ¹⁰	es •	50,253	\$ 51,	51,761 \$	53,313	\$	54,913 \$	\$ 56,560	\$ 09	58,257	\$ 60,005	s	61,805 \$	63,659	⇔	62,569	\$ 576	\$ 56,095 \$	816,209
Culture and Recreation Total	\$	50,253	\$ 51,	\$1,761 \$	53,313	\$	54,913 \$	\$ 56,560	\$ 09	58,257	\$ 60,005	\$	61,805 \$	63,659	\$	692,50	\$ 576	\$ 260,92	816,209

EXHIBIT "D"

Wingfield Commons

									AI	APPENDIX 6	9 XI													
					COM	TPARE	SONO	F ESTI	CITY	OF SI	CITY OF SPARKS AATED REVENUE	CITY OF SPARKS PARISON OF ESTIMATED REVENUE TO ESTIMATED COSTS	TIMAT	ED CC	STS									
Community Support		2029		<u>2030</u>	<i>8</i> I	<u>2031</u>	72	<u>2032</u>	<u>20</u>	<u>2033</u>	<u>20</u>	<u>2034</u>	2035	ısı	<u>20</u>	<u>2036</u>	2037	<u>37</u>	2038		10-YEAR SUBTOTAL	AR FAL	20-YEAR TOTAL	AR AL
Management Services ⁹	€	2,896	€	2,983	€	3,071	€	3,162	€	3,256	€9	3,353	\$	3,453	s	3,555	€	3,661	& 	3,770 \$		33,161 \$		47,571
Community Support Total	∽	2,896	\$	2,983	\$	3,071		3,162	⇔	3,256	\$	3,353	&	3,453	50	3,555	↔	3,661	8	3,770 \$		33,161 \$		47,571
EXPENDITURES SUBTOTAL	\$	667,831		\$ 687,394 \$ 700	8 7	07,538	\$ 72	728,281	\$ 74	749,639	<i>LL</i> \$	771,633	\$ 794	794,281	8	817,601	\$ 84	841,614	998 \$	866,341 \$	7,632,154		\$ 10,983,372	3,372
CONTINGENCY	�	•	€	•	↔		€		€		€		∞		↔		€	i	∞	€		\$		ı
EXPENDITURES TOTAL	\$	667,831		687,394	\$ 707	07,538	\$ 72	728,281	\$ 74	749,639	<i>LL</i> \$	771,633	\$ 794	794,281	\$	817,601	\$ 84	841,614	998 \$	866,341 \$	7,632,154	,154 \$	10,983,372	3,372
GENERAL FUND SURPLUS/(DEFICTI	STT \$	80,103	\$	82,979		85,946	\$	800'68	<u>\$</u>	92,168	6 \$	95,428	86 \$	<mark>98,793</mark>	\$ 10	102,264	\$ 10	105,847	\$ 109	109,544 \$		942,080 \$		1,450,267
ROAD FUND																								
REVENUE																								
Licenses and Permits Licenses and Permits ^{3,14}	↔	43,168	€	44,463	€	45,797	&	47,171	& 4	48,586	es es	50,043	\$ 51.	51,545	€	53,091	.v ⇔	54,684	\$ 56	56,324	\$ 494	494,871 \$		701,132
Subtotal	\$	43,168	\$	44,463	\$	45,797	♦	47,171	\$	48,586	& O	50,043	\$ 51	51,545	\$	53,091		54,684		56,324 \$		494,871 \$		701,132
Intergovernmental Revenues County Gasoline Tax ³ State Gasoline Tax ³	↔	11,596	↔	11,944	↔	12,302	~	12,671	& :: ::	13,051	& 	13,443	\$ 13.	13,846	€9	14,261 38,445		14,689	\$ 15	15,130 \$	\$ 132 358	132,932 \$ 358.355		188,338
Subtotal	€	42,855	90	44,141		45,465	8	46,829	8	48,234	& &		\$ 51	51,171	99	52,707	&		\$ 55	\$ 916 , \$		491,287 \$		696,054
<u>Miscellaneous</u> Interest Earned'	8	'	\$	'	S	1	S	'	S	1	÷	'	÷	'	∽	1	S	1	÷	-		-		
Subtotal	€		\$	•	\$	•	≪	•	⇔	•	€	٠	≪	٠	90	٠	⇔	•	\$	-		·		
REVENUE TOTAL	~	86,023	\$	88,604	\$	91,262	5 *	94,000	<mark>6 </mark>	<mark>96,820</mark>	6 *	99,724	\$ 102	102,716	\$ 10	105,798	\$ 10	108,972	<mark>\$ 112</mark>	112,241 \$		986,159 \$		1,397,186
EXPENDITURES																								
Public Works ¹⁵	↔	\$ 164,336	•	164,369	↔	164,401	\$ 16	164,435	\$ 16	164,469	\$ 16	164,504	\$ 164	164,540	\$ 10	164,576	\$ 16	164,613	\$ 164	164,651 \$	1,644,894	\$ 894		2,793,414
EXPENDITURES SUBTOTAL	\$	164,336	\$	164,369	\$	164,401	\$ 10	164,435	\$ 16	164,469	\$ 16	164,504	\$ 164	164,540	\$ 1(164,576	\$ 16	164,613	\$ 16 4	164,651 \$	1,644,894	<mark>,894 \$</mark>		2,793,414
CONTINGENCY	€ >	•	€	•	↔	•	€		€		9		9		∞	1	9		€	9 €		s		ı
EXPENDITURES TOTAL	\$	164,336	so	164,369	so	164,401	\$ 16	164,435	\$ 16	164,469	\$ 16	164,504	\$ 164°	164,540	\$ 10	164,576	\$ 16	164,613	\$ 164	164,651 \$	1,644,894	<mark>894 \$</mark>		2,793,414
ROAD FUND SURPLUS/(DEFICIT)	\$	\$ (78,313) \$		(75,764)	(7)	<mark>73,139)</mark>		(70,435)	9) \$	(67,649)	9)	(64,779)	* (61)	(61,823)	\$	(58,778)	\$ (5	(55,641)	\$ (52	(52,410) \$		(658,735) \$		(1,396,228)

EXHIBIT "D"

APPENDIX 6 CITY OF SPARKS COMPARISON OF ESTIMATED REVENUE TO ESTIMATED COSTS

APPENDIX 6, ASSUMPTIONS:

Unless otherwise indicated, the analysis uses Estimated Current Year Ending 6/30/2017 (Fiscal Year 2016-2017) revenue and expenditure data from the City of Sparks Budget, FY 2017-18.

- 1 See Appendix 3 for calculations.
- 2 The analysis is conservative in not estimating the increase in some Sparks business-related revenues resulting from new residents of the development, though this increase is expected to occur
- Source: City of Sparks Budget FY 2017-18. annually and applied to the estimated annual population of 93,581 the Project. Per capita revenue is calculated by dividing FY 2016-17 revenue for each source by City of Sparks FY 2016-17 population of 3 ACM: Revenues are calculated based on estimated FY 2016-17 City of Sparks estimated per capita revenues inflated
- 4 See Appendix 4 for calculations.
- of all County C-tax revenue. As a result, the City's portion of GST revenue is 5 In addition to CCRT revenue, Consolidated tax for the City includes revenue from Real Property Transfer Tax, GST (MVPT), Cigarette and Liquor taxes. A per capita methodology as explained in footnote 3 is applied to estimate this revenue. Total Washoe County revenues from liquor, cigarette and GST (analysis conservatively does not include RPTT as it is not a recurring revenue) 12.13% 30,048,968 in FY 2016-2017. City of Sparks is estimated to receive 3,643,715 and the ACM is applied to this amount. sources totaled \$
 - 6 In addition to sales tax revenue, AB 104 revenue for the City includes revenue from property, gaming, and RPTT taxes and interest. Analysis is conservative in not estimating gaming, RPTT, and interest Source: Nevada Department of Taxation. "Consolidated Tax Distribution." City of Sparks portion of C-tax revenue is based on a three-year average data for FY 2014-15 to FY 2016-17.
- 7 Though the project may generate revenue for the City from these sources, the amount is difficult to estimate and/or expected to be minimal.
- 8 Charges for services for the City include inter-department and inter-fund transfers, which, though impacted, may be difficult to estimate. Some charges for services revenue, such as false alarms may
- of direct service costs. 25.7% Source: Average percent indirect costs of direct costs for FY 2016-17. Source: City of Sparks Budget, FY 2017-18. 9 Administrative service (indirect) costs assumed to be impacted by the project are calculated at

be generated by the project, but again are difficult to estimate

revenue. Property tax revenue is estimated in Appendix 3.

- Source: City of Sparks Budget FY 2017-18. annually and applied to estimated annual population 93,581 of the Project. Per capita costs are calculated by dividing FY 2016-17 costs for each source by City of Sparks FY 2016-17 population of 10 ACM: Expenditures are calculated based on estimated FY 2016-17 City of Sparks budget per capita costs inflated
 - 11 See Appendix 7 for calculations and assumptions.
 - 12 See Appendix 8 for calculations and assumptions.

EXHIBIT "D"

- 13 Expenditures for the Public Works source include Public Works administrative and facility maintenance costs. Costs associated with these services are estimated by dividing total expenditures for this source of inflated 3% annually. Source: Expenditures from City of Sparks budget FY 2017-18, City of Sparks streets inventory from City of Sparks Community Services Department. **67,541,767** and applying to the number of square feet added by the development of \$ 1,480,919 by the total square feet of City of Sparks streets of
 - Revenue estimates in 2018 are reduced by the one-time shift of some franchise revenues from the Road Fund to the Park & Recreation Project Fund.
 - 15 See Appendix 9 for calculation and assumptions.

APPENDIX 7 CITY OF SPARKS POLICE DEPARTMENT COST PROJECTIONS

<u>YEAR</u>	CUMUL. NEW RESIDENTIAL POPULATION	OFFICERS REQUIRED	CIVILIANS REQUIRED	SALARY/ BENEFITS	SERVICES/ SUPPLIES	NEW/REPLACE. VEHICLE <u>PURCHASE</u>	ANNUALIZED VEHICLE <u>COSTS</u>	TOTAL COST
2019	-	-	-	\$ -	\$ -	\$ -	\$ -	\$ -
2020	-	-	-	-	-	-	-	-
2021	61	0.09	0.03	12,150	426	-	9,514	22,090
2022	290	0.43	0.14	59,416	2,082	-	9,514	71,012
2023	519	0.78	0.26	109,460	3,836	-	9,514	122,810
2024	747	1.12	0.37	162,404	5,692	-	9,514	177,610
2025	976	1.46	0.49	218,378	7,653	28,600	9,514	235,545
2026	1,144	1.72	0.57	263,461	9,233	-	9,514	282,208
2027	1,144	1.72	0.57	271,233	9,506	-	9,514	290,252
2028	1,144	1.72	0.57	279,234	9,786	-	9,514	298,534
2029	1,144	1.72	0.57	287,472	10,075	-	9,514	307,060
2030	1,144	1.72	0.57	295,952	10,372	66,149	9,514	315,838
2031	1,144	1.72	0.57	304,683	10,678	-	9,514	324,874
2032	1,144	1.72	0.57	313,671	10,993	-	9,514	334,177
2033	1,144	1.72	0.57	322,924	11,317	-	9,514	343,755
2034	1,144	1.72	0.57	332,450	11,651	-	9,514	353,615
2035	1,144	1.72	0.57	342,257.54	11,995	76,499	9,514	363,766
2036	1,144	1.72	0.57	352,354	12,349	-	9,514	374,216
2037	1,144	1.72	0.57	362,749	12,713	-	9,514	384,975
2038	1,144	1.72	0.57	373,450	13,088	-	9,514	396,051
TOTAL				\$ 4,663,697	\$ 163,443	\$ 171,247	\$ 171,247	\$ 4,998,387

APPENDIX 7, ASSUMPTIONS:

1. Population estimates are shown in Appendix 2 of the report.

2. Uniformed officer positions are estimated at 1.5 positions per 1,000 population.

For non-uniformed positions, a ratio of 0.5 positions for every three uniformed positions, is used. Source: City of Sparks Police Department.

The following City of Sparks salary information is used to estimate operating costs, inflated
 3% annually.

FY 2017-18	Low	<u>High</u>		Average													
Police Officer \$	51,730	\$ 67,371	\$	59,550													
Sergeant	73,112	87,734		80,423													
Crime Analyst	55,245	70,512		62,878													
Records Technician	45,510	57,990		51,750													
Police Office Assistant	34,070	43,368		38,719													
GT/IT Support Specialist	44,866	57,179		51,022													
Dispatcher	43,368	55,245		49,306													
Weighted Average Officers \$	54,402	\$ 69,917	\$	62,160													
Weighted Average Civilians \$	40,351	\$ 51,396	\$	45,873	Source:	: '	'C	Online Jo	Online Jobs Page	'Online Jobs Page."	'Online Jobs Page." City	'Online Jobs Page." City of Si	'Online Jobs Page." City of Sparks	'Online Jobs Page." City of Sparks Hum	'Online Jobs Page." City of Sparks Human Re	'Online Jobs Page." City of Sparks Human Resou	'Online Jobs Page." City of Sparks Human Resource

4. Benefits costs are calculated at 57.1% of salaries.

Services/Supplies costs calculated at 3.5% of salaries and benefits. Source: Three-year average FY 2015-16 through FY 2017-18 from City of Sparks Budget FY 2017-18.

5. One police vehicle is added for every 3 uniformed positions. The 2017 cost of a fully-equipped vehicle is \$70,000 inflated 3% annually. Life of

vehicle is 5 years and the analysis includes vehicle replacement costs with no salvage value. Source: City of Sparks Police Department.

APPENDIX 8 CITY OF SPARKS FIRE DEPARTMENT COST PROJECTIONS

<u>YEAR</u>	CUMUL. # OF <u>UNITS</u>	PROJECT <u>CFS*</u>	TIMATED OST/CFS	TOTAL EXPENSES
2019	0	0.00	\$ 1,518 \$	-
2020	24	2.89	1,563	4,522
2021	114	13.74	1,610	22,122
2022	204	24.59	1,658	40,775
2023	294	35.44	1,708	60,527
2024	384	46.28	1,759	81,427
2025	450	54.24	1,812	98,285
2026	450	54.24	1,866	101,233
2027	450	54.24	1,922	104,270
2028	450	54.24	1,980	107,398
2029	450	54.24	2,039	110,620
2030	450	54.24	2,101	113,939
2031	450	54.24	2,164	117,357
2032	450	54.24	2,229	120,878
2033	450	54.24	2,295	124,504
2034	450	54.24	2,364	128,239
2035	450	54.24	2,435	132,086
2036	450	54.24	2,508	136,049
2037	450	54.24	2,584	140,130
2038	450	54.24	2,661	144,334
TOTAL	*	*CFS-calls for service.	\$	1,888,695

*CFS-calls for service.

APPENDIX 8, ASSUMPTIONS:

- 1. Number of residential units from Appendix 1. Analysis includes all units, not just occupied units, for Fire Department impacts.
- 2. Residential calls for service are estimated using average cfs per unit data for single-family residential properties between FY 2011-12 and FY 2015-16, estimated at 0.12 cfs. Source: City of Sparks Fire Department and Washoe County Assessor's Office parcel data for number of single-family units.
- 3. Costs to provide services to the development are estimated at 1,430.44 per call for service. This is estimated using total fire expenditures between FY 2011-12 and FY 2015-16 divided by total calls for service during this period. This includes costs for Administration, Emergency Services, and Training and Safety. Estimated costs are inflated 3% annually.

APPENDIX 9 CITY OF SPARKS STREET MAINTENANCE COST PROJECTIONS

	$\frac{\text{TOTAL}}{\text{MAINT.}}$	ı	1	1	163,145	164,156	164,184	164,213	164,243	164,274	164,305	164,336	164,369	164,401	164,435	164,469	164,504	164,540	164,576	164,613	164,651	2,793,414	
	TOTAL ANNUALIZED COST	•	1	1	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	162,724	2,766,308	
REPAIR	OAD HAB OST	<i>\$</i>	1	1	1			1	1	1	1	1	1	1	1	ı		1	1	ı	2,032,479	2,032,479 \$	
	3 INCH OVERLAY COST	·	1	1	1	,	1	1	1	1	1	1	1	1	1,030,273	1	1	1	1	1		1,030,273 \$	
	SLURRY/ CRACK C SEAL COST	\$ -	ı	1	ı	ı	ı	ı	ı	86,403	ı	ı	1	ı	ı	ı	ı	ı	ı	105,325	1	\$ 191,727 \$	
	TOTAL	ı	ı	ı	421	1,432	1,460	1,489	1,519	1,550	1,581	1,612	1,645	1,677	1,711	1,745	1,780	1,816	1,852	1,889	1,927	27,106	
	STREET STRIPING COST	·	1	1	1	293	298	304	310	317	323	329	336	343	350	357	364	371	378	386	394	5,454 \$	
MAINTENANCE		•	ı	1	421	430	438	447	456	465	474	484	493	503	513	524	534	545	556	267	578	8,428 \$	
MA	CATCH BASIN COST	\$ -	ı	ı	ı	7	7	∞	∞	8	∞	∞	8	6	6	6	6	6	6	10	10	\$ 136 \$	
	SEWER CLEANING COST	•	ı	ı	ı	702	716	731	745	092	775	791	807	823	839	856	873	891	806	927	945	\$ 13,088 \$	
	ADDED LINEAR FEET	1	1	1	5,300	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		5,300	OTTONS.
	ADDED SQUARE <u>FEET</u>	•	1	ı	195,400	•	1	1	1	1	1	1	1	1	1	1	1	1	1	1	•	195,400	A PPENDIX 9 ASSIMPTIONS:
	YEAR	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	TOTAL	A DDENDI

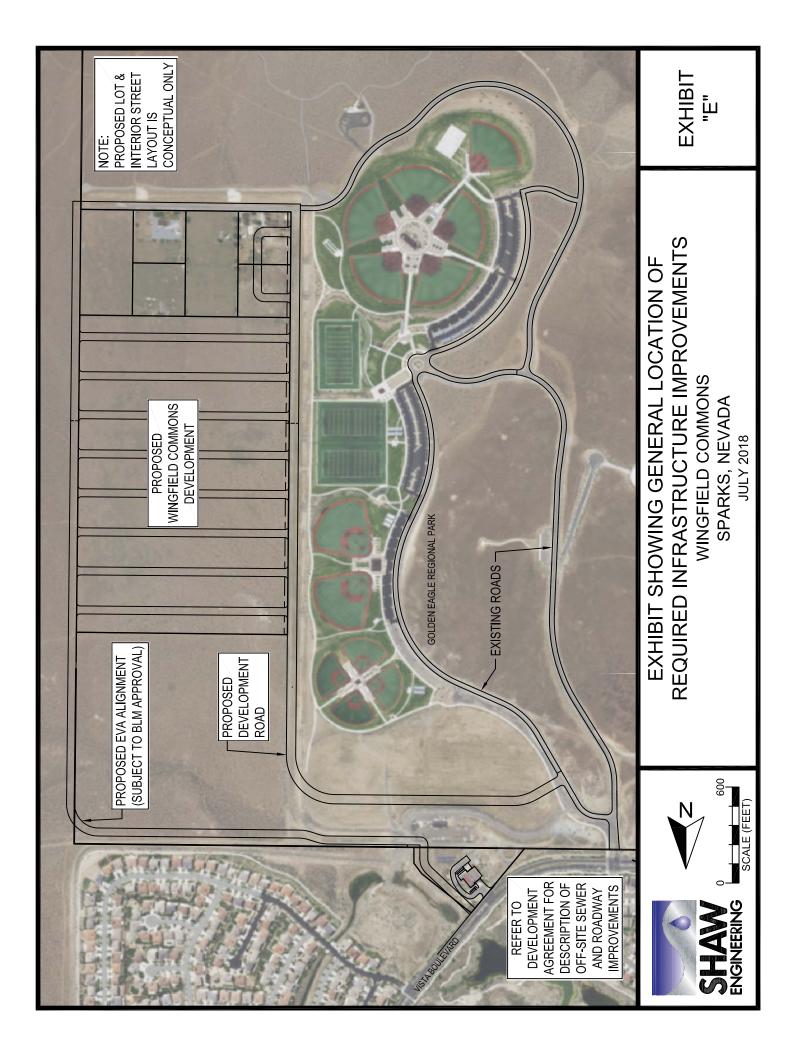
APPENDIX 9, ASSUMPTIONS:

195,400 square feet of streets to be dedicated to the City for maintenance in

linear feet or

5,300

^{1.} The development is projected to construct approximately the year shown above.


STREET MAINTENANCE COST PROJECTIONS CITY OF SPARKS

2. The following street maintenance costs are used to estimate the impact of the development's streets on the City:

Item Frequency Cost

				per linear foot Note: 2/3 of the cost is added annually	Note: 3/5 of the cost is added annually	Note: cost is multiplied by 12 annually	
	per square foot	per square foot	per square foot	per linear foot	per mile	per mile	per linear foot
	\$0.37	\$4.00	\$7.00	\$0.18	\$11.56	\$32.30	\$0.05
Commission	Year 5 and 15	10 years	20 years	1.5 years	1.75 years	30 days	1 year
	Slurry/Crack Seal	3 Inch Overlay	Road Rehabilitation	Sewer Cleaning	Catch Basin Cleaning	Street Sweeping	Striping

Costs are inflated 2% annually. Source: City of Sparks Community Services Department. Estimated repair (extraordinary maintenance) costs are annualized by taking the total estimated costs over the 20-year period and dividing by 20 years.

